Report from WP4: Polarised Positron Source

Jim Clarke ASTeC CCLRC Daresbury Laboratory

2nd EuroTeV Annual Workshop, Daresbury, January 2007

Work Areas

- Undulator manufacture
- Impact of undulator
- Photon collimator
- Conversion Target
- Spin Tracking
- Low Energy Polarimetry

Manufacturing prototypes

Prototypes family

First 4 300mm long prototypes

Final 500mm long prototype-Almost ready to test !

Short prototypes results summary

4m Module Overview

Undulator Parameter Optimisation with Target

Required number of photons per positron at IP

Resistive Wall Results

- Energy spread inrease of nominal, 200m - 5.6mm vessel
- Red is room temperature, blue is at 77K
- Induced energy spread is 5 10⁻⁶
- Vessel will actually be at 4K but hard to get reliable material data for modelling – will just get better

Surface Roughness Wakefields

energy spread increase of 10% of nominal with 200m long vessel against vessel radius

Magnetic Errors & Trajectory Correction

- σ of Peaks ±5% (~5 times worse than measured)
- 2 x 2m undulators per module

Results from 100 random seeds

- The trajectory can be corrected to within a few microns over 4m
- No correction in modules may be ok especially when considering real errors are 5 times smaller

With Correction

Without Correction

FLUKA Photon Collimator Simulations (1)

Absorber

Assume a 300kW 10 MeV photon beam with Gaussian transverse beam profile (1mm rms):

Power deposited in spoiler: ~2.5 kW

Power deposited in absorber: ~3 kW

(1.8% of total beam power)

Starting collimator geometry: Inner radius of spoiler 1.2mm Thickness of spoiler 2.3mm Inner radius of absorber 53.5mm Thickness of absorber 160mm Collimator length 1500mm

Lei Zang, University of Liverpool

FLUKA Photon Collimator Simulations

Electron fluence (per primary photon) Positron fluence

(per primary photon)

Target Station - Remote Handling

Vertical remote-handling design to mimimise footprint of target hall and therefore minimise civil engineering costs.

Beam Power and Deposited Power in Target

	Conventional	Undulator (150 GeV)
Primary Beam Power (kW)	253.1	139.4
Power Deposited in the Target (kW)	48.3	11.2
Power Deposited in the AMD (kW)	49.1	7.9
Power Deposited in the RF Structure (kW)	85.5	1.0
Power Deposited in the Solenoid (kW)	8.1	0.1

(assumes 100m Undulator)

More Detailed FLUKA Model Being Developed

OCS Spin Diffusion at 5.066GeV for spins initially at 100 mrad from \hat{n}_0

Longitudinal polarisation (some fraction) can survive DR

a) Spin precession

PPARC review committee: check if used equations in CAIN are applicable!

- validation of T-BMT equation
- What has been used?

$$\frac{d\boldsymbol{S}}{dt} = -\frac{e}{m\gamma} \left[(\gamma a + 1)\boldsymbol{B}_T + (a+1)\boldsymbol{B}_L - \gamma(a + \frac{1}{\gamma+1})\beta \boldsymbol{e}_v \times \frac{\boldsymbol{E}}{c} \right] \times \boldsymbol{S}.$$

- 'a' is anomalous magnetic moment of electron a=(g-2) / 2= $\alpha/2\pi$ + ...
- higher-order effect, radiative corrections to eeγ vertex
- measured up to accuracy of 10-11
- Due to strong fields (beamstrahlung), a is function of field
 - unpublished expression from V. Baier used.....
 - has been checked now

Baier derived

a) expression for anomalous moment of e in a medium

- use ansatz in perturbation theory
- relates spin-dependent part of corrections with magn. moment
- b) get expression valid in beam-beam interactions
- use this expression for the case that 'no' scattering happens
- that has been used in CAIN
- c) used approximation: quasi-classical approximation
- (one) condition: change of momentum due to external field has to be slowly
- applicable if: Larmor radius in magn. field much larger than particle wavelength

ok for our case, even although fields are strong

G4 Implementation

G4 Implementation

Bhabha Polarimeter

- ▶ e^+ beam, $E \approx 200~{\rm MeV}$
- ▶ magnetised iron foil 30 μ m
- simulation gives distribution and analysing power for e⁺, e⁻ and γ

electron distribution

Bhabha Polarimeter

- Measures Asymmetry of scattered particles $(e^+,e^-,(\gamma))$ of two magnetization states of the target

- Mask or shielding selects angular range with max. asymmetry
- Spectrometer -> particle separation, energy selection

Bhabha Polarimeter: Target

- Magnetized thin IronTarget
- Heating of the target -> Magnetization decreases
 - Simulation for 30 µm
 - Cooling by radiation
 - T_{C} (Fe) = 1039 K; melting point 1808 K

- Ongoing considerations on target layout
 - ΔT -> ΔM -> ΔP -> ΔA
 - Magnetic field (tilted or not)
 - Cooling in real
 - Monitoring of magnetization

