Dynamic Simulations unsing PLACET

D. Schulte

#### Introduction

- Studies in 2006 concentrated on static alignment and tuning
- Dynamic effects are very important in ILC and CLIC
  - $\Rightarrow$  started to prepare simulation tools
  - $\Rightarrow$  preliminary results
- Main difference between CLIC and ILC
  - ILC has large time interval between pulses, instable beam-beam collisions but intra-pulse feedback
  - CLIC has smaller time interval between pulses, more stable beam-beam collisions, but intra-pulse feedback
  - in ILC most effects are expected from the BDS
  - in CLIC main linac is also important, stabilisation of elements is used

# Integrated Dynamic Luminosity Simulations

- Before the integration, each subsystem should be studied seperately
  - feedback systems
  - impact of dynamic effects on correction procedure
- Different componenets that need inclusion
  - RTML
    - ILC: lattice available, correction procedure not complete, feedback need definition
    - CLIC: developing lattice
  - main linac
    - ILC: lattice available, conceptual correction procedure, conceptual feedback, needs full study and adaptation to real lattice
    - CLIC: lattice available, conceptual correction procedure, conceptual feedback, needs full study
  - BDS
    - ILC: lattice available, correction procedure needs to be adopted and cross checked, are working on feedback systems/adopt from others
    - ILC: lattice available, correction procedures being worked out, feedback needs to be defined

# Overview of Talk

- We are still in a starting phase
- Some results on
  - impact of dynamic effects on main linac alignment
  - main linac feedback
  - impact of jitter on luminosity
  - feedback in  $\mathsf{BDS}$

# Simplified Simulations of ILC Main Linac Quadrupole Jitter



#### Luminosity Loss Enhancement

- ⇒ Luminosity loss is enhanced with respect to expectation from emittance growth
- $\Rightarrow$  Offset optimisation does not improve beam-beam feedback a lot
- $\Rightarrow$  But angle optimisation does
- $\Rightarrow$  For larger emittance growth loss enhancement is reduced



# ILC Main Linac Quadrupole Jitter



 $\Rightarrow$  Emittance growth is larger than in old lattice since more quadrupoles and smaller beta-functions

# **ILC Full Lattice Simulations**



- $\Rightarrow$  Significant emittance growth due to jitter in first part of linac
- $\Rightarrow$  Much worse than simplified lattice
- $\Rightarrow$  Need to verify automatic translation but expect result to be correct

# Impact of BDS

- Additional emittance growth can be expected in BDS
  - $\Rightarrow$  an intra-pulse feedback at the end of the linac should help
- Simplified model of intra-pulse feedback used in simulation
- $\bullet$  Observed growth

|       | end of linac | IP no traj. feedb. | IP with traj. feedb. |
|-------|--------------|--------------------|----------------------|
| linac | 1.7nm        | 2.3nm              | 1.8nm                |
| und.  | 0.6nm        | 1.2nm              | 0.7nm                |

- $\Rightarrow$  Intra-pulse feedback helps somewhat
- $\Rightarrow$  Little additional emittance growth in BDS
- But need to include collimators

#### Main Linac Quadrupole Jitter in CLIC



 $\sigma_{\text{quad}}\,[\text{nm}]$ 

#### Jitter Tolerance



 $\Rightarrow$  Luminosity loss for 1nm jitter  $\approx 1.25\%$ 

- Stabilisation has been demonstrated to better than 1nm with comercial equipment
- Pulse-to-pulse luminosity jitter already from beam-beam simulation

#### Quadrupole Jitter in CLIC BDS



 $\Rightarrow$  Stability of 0.5nm for quadrupoels and 0.1nm for final double quadrupoles

# Main Linac Feedback Options

- Local (cascaded) feedback
  - could use special equipment
  - relatively large residual emittance growth
- Permanent one-to-one (implemented as few-tofew)
  - acceptable for long time
  - mover steps can become quite small
  - $\Rightarrow$  need to find algorithm to solve this
- MICADO style correction
  - converges as one-to-one
  - typically larger step sizes
- Adaptive alignment
  - local algorithm



- Perfect one-to-one alignment after ATL-type ground motion
  - simplified lattice used
  - $\Rightarrow$  no significant growth before a month
- But dynamics of alignment not modelled

#### Results



- Local feedback, MICADO and few-to-few correctin used after  $3\times 10^5 {\rm s}$  of ATL-type ground motion
- $\Rightarrow$  Residual growth for local feedback
- $\Rightarrow$  Should use full ground motino model



#### Impact of Corrector Step Size



Iteration

#### Dynamic Effects During Alignment

- Dispersion free steering uses beams at different energies to align quadrupoles
- They can be obtained using different gradients or bunch compressor settings
- Beam jitter during alignment fakes dispersion
  - either accept
  - or try to fit incoming beam trajectory
  - or use different energies within single pulse
- Simulations done using simplified ILC lattice
- Nominal misalignments are used
  - 1.5% RMS gradient jitter from RF unit to RF unit
  - 5% RMS random scale error of BPMs
- Needs to be redone with full lattice

- Small energy difference used
  - gradient difference 1%
  - first two units are off
  - $\Rightarrow$  alignment of first six quadrupoles not treated

#### **Emittance Growth**

- Dispersion tuning knobs used at beginning and ending of linac
- Resulting emittance growth depends on weight on trajectory difference
- Incoming beam trajectory is fit using two BPMs before the correction bin
- $\Rightarrow$  Fit of incoming beam pushes to low weigths on differences
- $\Rightarrow$  Better fit procedure could be developed



• Propose to use bunches at different energies from a single pulse (as suggested for CLIC)

# Quadrupole Jitter

- Very large quadrupole jitter of 500nm added
- $\Rightarrow$  Procedure with no fit suffers most
- $\Rightarrow$  Fit of incoming beam helps a bit
- $\Rightarrow$  Use of different energies in single pulse is best
- $\Rightarrow$  But could try better fit
- $\Rightarrow$  Recommend to use energy difference within a single pulse
- correction can be performed with stable machine
- if spread can be reduced (better BPM resolution/averaging) or test bunches are used (after main pulse) one could align during luminosity operation



# Full Integration of Feedback (ILC Example)

- Studies just started
- Quite time consuming
- Example:
  - use only BDS and beam-beam
    - PLACET and GUINEA-PIG
  - assume all bunches in a pulse are equal
  - use ground motion of noisy site (model C) for a given time
  - run 49 pulses with orbit feedback only orbit feedback is not optimised
  - run beam-beam feedback using BPMs
    no luminosity optimisation feedback included
  - run next pulse using initial beam-beam feedback as starting value

Results for 100s



Results for 1000s



- $\Rightarrow$  Luminosity loss with time seems not too dramatic
  - orbit feedback not yet optimised
- $\Rightarrow$  Pulse-to-pulse luminosity variations would make tuning knobs quite slow
  - Stabilisation of elements will help
  - Or choice of a quiet site
  - Further studies with
    - more cases
    - intra-pulse luminosity optimisation
    - improved orbit feedback
    - pulse-to-pulse luminosity optimisattion
    - inclusion of main linac and RTML

# Conclusion

- The tools to perform integrated simulations of dynamic effects have been largely provided
  - integration of PLACET and GUINEA-PIG
- Started to define the feedback strategy
  - probably MICADO in the main linac (but more tests)
- Started to investigate impact of dynamic effects on beam-based alignment
  - seems not desastreous
  - studied simple way to recude impact of effects
- $\Rightarrow$  Need to run many cases and verify results