

ILC: From RDR to EDR or "How to Spend the Money"

Nick Walker GDE

Contents

- Evolution (status) of the baseline design for the RDR
- Transitioning to an Engineering Design Phase
 - What's needed for the Engineering Design Report (EDR)
- Global R&D
 - GDE global coordination efforts
 - Test Facilities

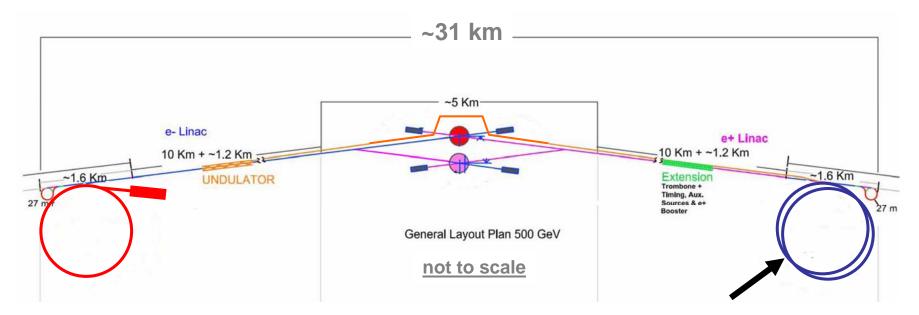
• Frascati 11.2005: Fundamental ILC Baseline for costing agreed upon.

 Vancouver 2006: First tentative Cost Estimate Available

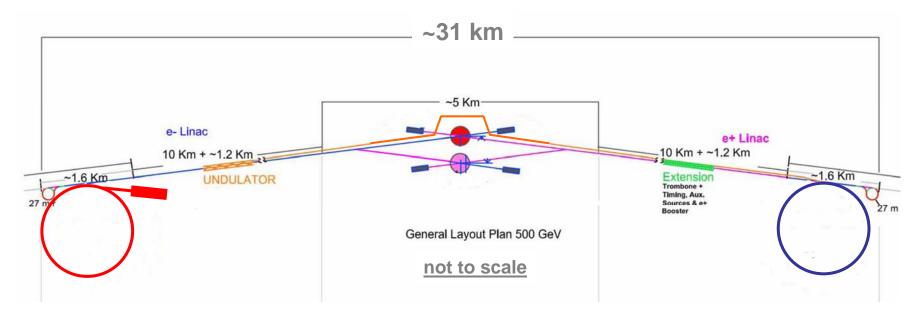
• Beijing 2007: Publication of RDR baseline machine with tentative cost estimate.

The Evolving ILC Baseline

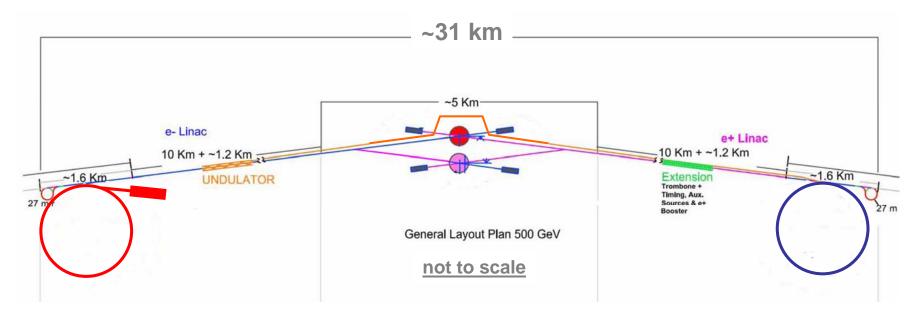
- Frascati 11.2005: Fundamental ILC Baseline for costing agreed upon.
 - International RDR design teams formed (socalled RDR matrix)
- Vancouver 2006: First tentative Cost Estimate
 Available


• Beijing 2007: Publication of RDR baseline machine with tentative cost estimate.

The Evolving ILC Baseline

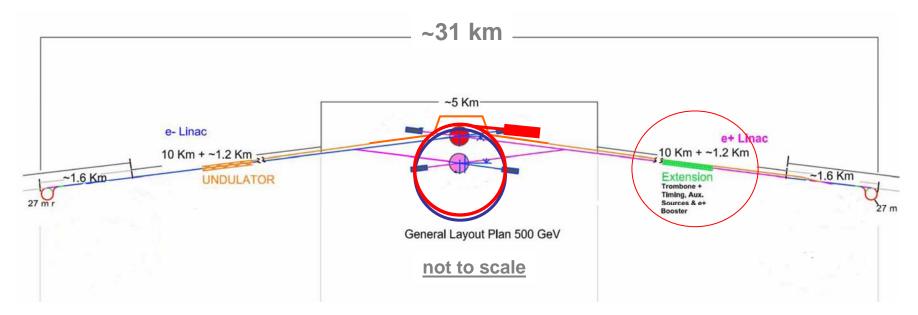

- Frascati 11.2005: Fundamental ILC Baseline for costing agreed upon.
 - International RDR design teams formed (socalled RDR matrix)
- Vancouver 2006: First tentative Cost Estimate Available
 - Cost too high. Begin major cost reduction iterations
 - Many cost-driven design modifications implemented
- Beijing 2007: Publication of RDR baseline machine with tentative cost estimate.

Removal of second e+ ring



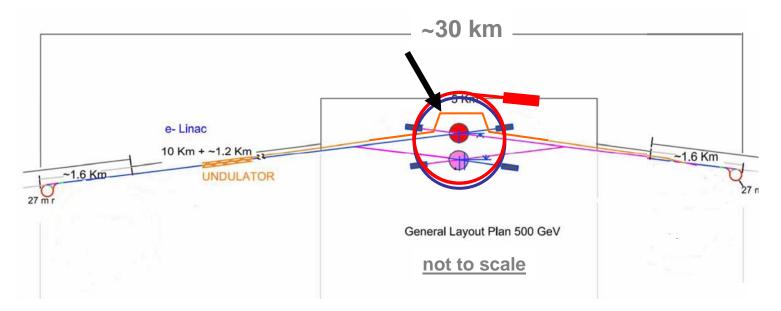
Removal of second e+ ring

simulations of effect of clearing electrodes on **Electron Cloud** instability suggests that a **single e+ ring** will be sufficient



Centralised injectors

Place both e+ and e- ring in single centralized tunnel


Centralised injectors

Place both e+ and e- ring in single centralized tunnel

Adjust timing (remove timing insert in e+ linac)

Centralised injectors

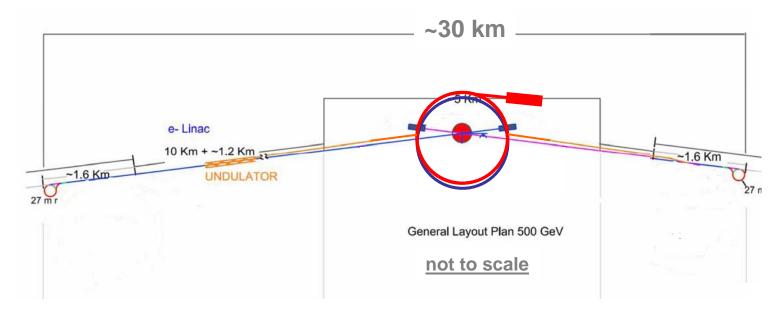
Place both e+ and e- ring in single centralized tunnel

Adjust timing (remove timing insert in e+ linac)

Remove BDS e+ bypass

Baseline Configuration Long 5GeV low-emittance transport lines now required

Centralised injectors


Place both e+ and e- ring in single centralized tunnel

Adjust timing (remove timing insert in e+ linac)

Remove BDS e+ bypass

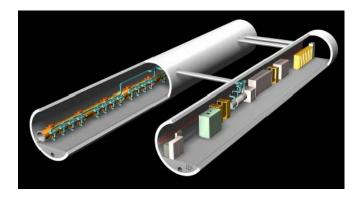
Final RDR baseline

RDR Status

- Design and cost estimate frozen
- Cost *methodology* reviewed complete at 2.5 day meeting in December (SLAC)
- RDR 'written report' currently being drafted
- Cost estimate being refined
 - No major adjustments
 - Cost will be reviewed this week here by ILC MAC
- On course to *go public* at Beijing Workshop (Feb '07).

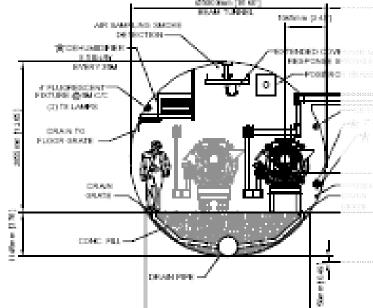
Final publication of RDR document mid 2007

What Happens after Beijing?



- Enter into Engineering Design Phase
 - Planning underway internally
 - Probably some reorganization of GDE to include stronger project management and work package responsibility.
 - Design will evolve through <u>value engineering</u> and <u>R&D</u> program (value engineering; R&D results; etc)
 - Cost of EDR will be consistent with RDR
- General Goal is to have <u>Construction Proposal ready</u> by **2010**

Is there a difference between "R&D" and "Engineering"?


Engineering Phase

<u>Main Linac tech</u>. and <u>Civil Engineering</u> remain primary cost drivers (over 50%)

Basic Engineering required to refine and (hopefully) reduce the cost of the machine

RF; Magnets & Power Supplies; Vacuum systems; Instrumentation; Controls; Water cooling; cryogenics; Civil Engineering ...

Sound engineering and design required \rightarrow Focus on Baseline

Need Well Defined Project Structure

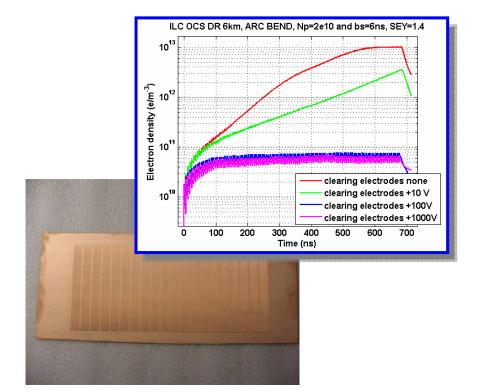
- Develop state-ofthe-art technologies
- Bring to maturity selected alternative designs which could reduce cost and/or increase performance
- Reduce risk in the baseline design
- Understand overall performance issues

 Develop state-ofthe-art technologies

High-gradient programme remains key to ILC success (cost driver)

However: many development areas exist which are not cost drivers, but are critical to achieving performance: DR kickers; e+ source undulator; diagnostics; controls etc...

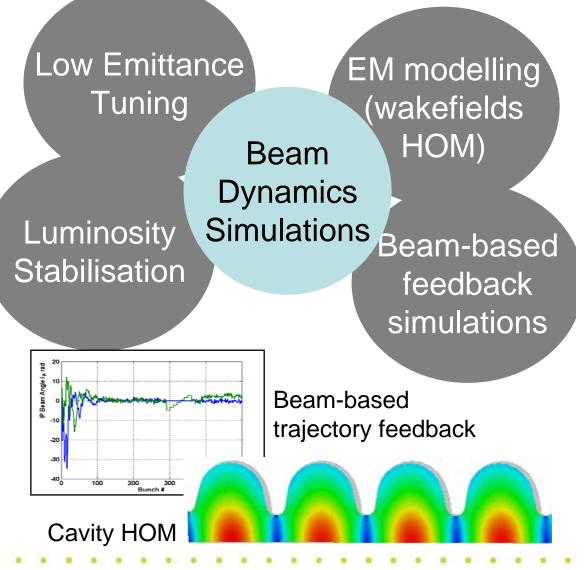
- Develop state-ofthe-art technologies
- Bring to maturity selected alternative designs which could reduce cost and/or increase performance



Single-cell ICHIRO cavities at KEK (50 MV/m achieved)

Solid-state (Marx) modulator development at SLAC

- Develop state-ofthe-art technologies
- Bring to maturity selected alternative designs which could reduce cost and/or increase performance
- Reduce risk in the baseline design


Suppression of e-cloud effect in the e⁺ DR (SLAC, LBNL, CERN, CCLRC, ...)

• Develop state-ofthe-art technologies

ir iic

- Bring to maturity selected alternative designs which could reduce cost and/or increase performance
- Reduce risk in the baseline design
- Understand overall performance issues

- Develop state-ofthe-art technologies
- Bring to maturity selected alternative designs which could reduce cost and/or increase performance
- Reduce risk in the baseline design
- Understand overall performance issues

Must be focused on '<u>cost</u> <u>reduction</u>' and/or '<u>performance enhancement</u>'

Must keep 2010 milestone in mind

Limited resources requires clear priorities to be set

ILC Global R&D and the GDE: "Driving the Money"

IC Mission of the Global R&D Board

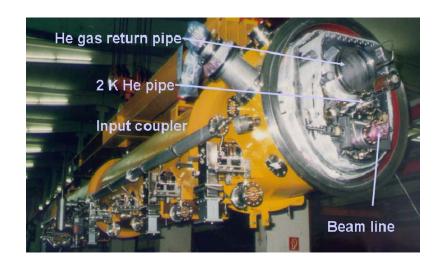
- Coordinate worldwide, prioritized, proposal- driven, R&D efforts
- The goal is clear, the detailed means required resolution by the RDB of issues, for example:
 - Level of coordination
 - Parallel efforts coordination, Regional needs
 - "Reviewing" role: Ideal vs specific R&D Program
 - Balance ILC/ILC Detectors issues
 - Goals, Timelines
 - Interfaces, RDB/DCB, RDB/Industrialization...
- RDB have already successfully interfaced with US (DoE) and UK (PPARC) ILC R&D proposals.

S0 High-Gradient Cavities S1 High-Gradient Cryomodule S2 Test Linac S3 **Damping Ring S4 Beam Delivery** S5...Sn

Priority: high

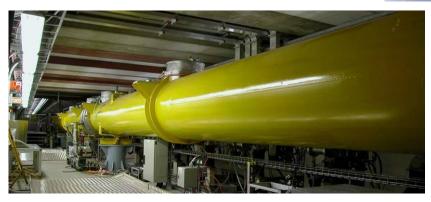
To address priority R&D items, RDB has convened several 'task forces'.

S0 High-Gradient Cavities


- Addresses current 'poor' yield for EP cavities
- Primary goal: establish parameters for routinely producing 35 MV/m EP'd cavities
 - required \geq 80% yield

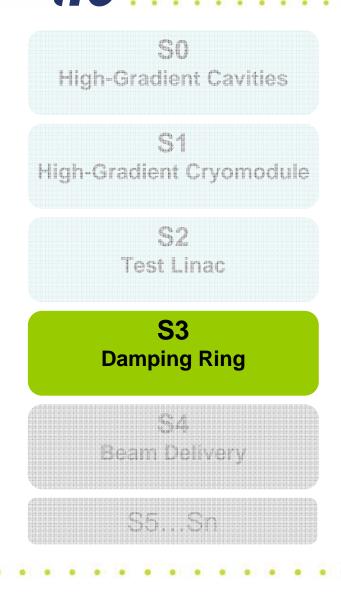
H. Hayano, T. Higo, L. Lilje, J. Mammosser, H. Padamsee, M. Ross, K. Saito

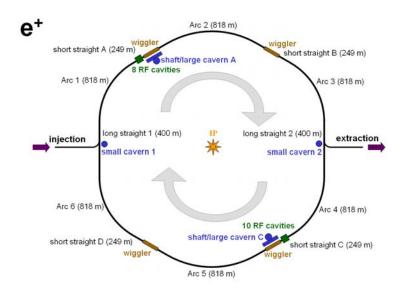
S0 High-Gradient Cavities



- Achieve 31.5 MV/m at a Q₀=10¹⁰ as operational gradient
- in more than one module of 8 cavities
- including e.g. fast tuner operation and other features that could affect gradient performance

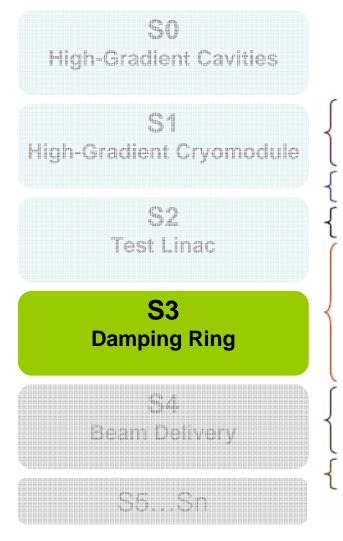
H. Hayano, T. Higo, L. Lilje, J. Mammosser, H. Padamsee, M. Ross, K. Saito




- Define requirements for 'string tests'
 minimum: 1 RF unit
- How many units required?
- Scope of string test

Hasan Padamsee (Co-Chair), Tom Himel (Co-Chair), Bob Kephart, Hitoshi Hayano, Nobu Toge, Hans Weise,

Consultants: Nagaitsev, Nikolai Solyak, Lutz Lilje, Marc Ross, Daniel Schulte

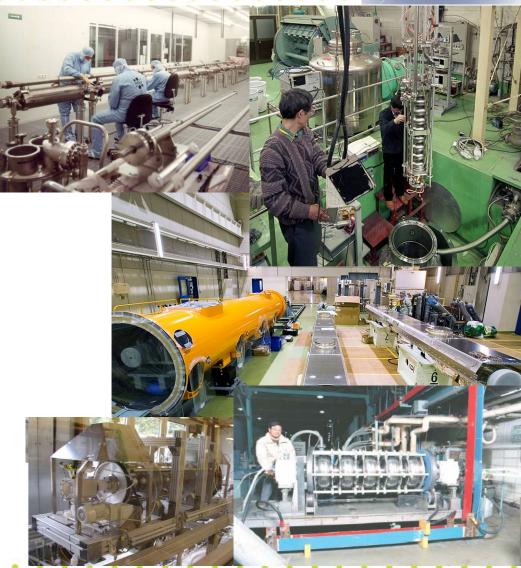


- Identification and prioritisation of DR related critical R&D
- Includes evaluation of available (and proposed) test facilities.

Elsen, Gao, Guiducci, Mattison, Palmer, Pivi, Urakawa, Venturini, <u>Wolski</u>, Zisman

High Priorities

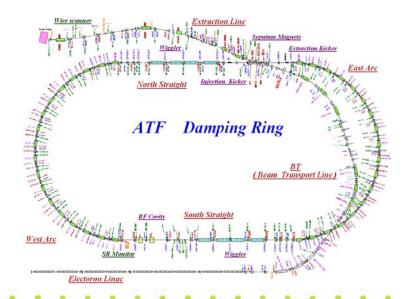
- 2.1.1.1 Lattice design for baseline positron ring
- 2.1.1.2 Lattice design for baseline electron ring
- 2.1.4.3 Demonstrate < 2 pm vertical emittance
- 2.2.1.2 Characterize single-bunch impedance-driven instabilities
- 2.2.3.1 Characterize electron-cloud build-up
- 2.2.3.2 Develop electron-cloud suppression techniques
- 2.2.3.3 Develop modeling tools for electron-cloud instabilities
- 2.2.3.4 Determine electron-cloud instability thresholds
- · 2.2.4.1 Characterize ion effects
- 2.2.4.2 Specify techniques for suppressing ion effects
- 3.5.1.1 Develop fast high-power pulser for injection/extraction kickers

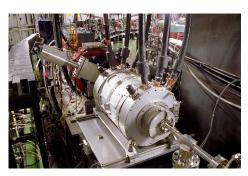

- 'Global' Test Facilities will be critical to ILC R&D effort
 - Will form central 'hub' around which (distributed) R&D will take place
- Current/Planned 'Test Facilities' fall into 3 categories
 - SCRF (high-gradient programmes, RF power...)
 - 'Available' storage rings (DR R&D)
 - Test beams (instrumentation, controls etc.)

Test Facilities: SCRF

- DESY (TTF/XFEL)
- KEK (STF)
- FNAL (ILCTF)
- Others

- Cornell
- JLAB
- ANL
 - ...
- Future (?)
 CERN
 CCLRC

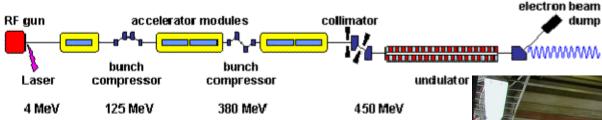

ATFI&II@KEK



- ATF
 - DR R&D (instabilities, emittance)
 - Diagnostics (laser wire etc.)
 - Fast-kicker development etc.
- ATF II
 - FF optics test bed
 - Diagnostics
 - International project

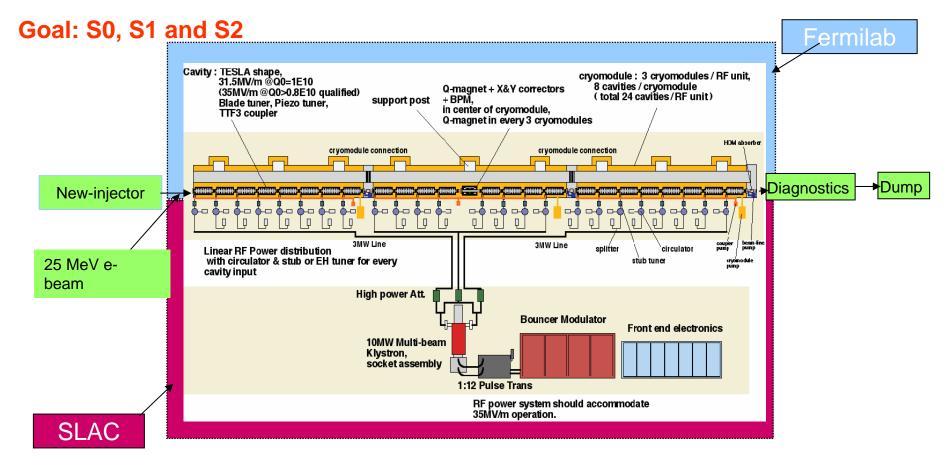
A unique facility in the world

ATF II begins construction this year





TTF (FLASH) @ DESY



- ILC-like bunch train
- Integrated systems test
 - LLRF test bed
- High-gradient tests
 Operational
- New Module Test Stand
 now available
 - Currently testing module 6 (high-gradient module)

Components provided by US and International Collaborators

1st RF Unit Integrated by US Laboratories and Universities

2nd RF Unit Produced and Integrated by ILC laboratories, Universities and Industries

ILC LLRF, Control, Instrumentation, Feedback etc. ILC Institutions

Other R&D 'Centres'

- SLAC End Station A
 - Beam diagnostics test area
- SLAC RF Power test area
 - Modulator development (Marx)
 - Klystron test
 - RF distribution
 - ...
- DR sites
 - existing storage rings, possible use as DR experimental areas under discussion \rightarrow S3 task force
 - CESR at Cornell
 - HERA e- ring @ DESY
 - ALS @ LBNL
 - DAΦNE @ INFN

- GDE will shortly achieve its first major milestone with the publication of the RDR and associated cost estimate
 - The ILC is now in a transition phase

...;lr

- Post-RDR Engineering Phase will require a significant ramp-up of the global engineering and design resources
 - GDE planning better global project structure with distributed Work Packages
- R&D already well established but requires better global coordination
 - Clear priorities have been set by the GDE
- Many exciting challenges ahead
 - …and not all of them technical ones!