Particle Flow and Calorimetry at the ILC

Mark Thomson University of Cambridge

<u>This Talk:</u>

- ILC Physics ↔ ILC Calorimetry
- Introduction to PFA
- Calorimetry in the ILC Detector Concepts
- **Operation of the sector of th**
- S PandoraPFA
- **O** Current Performance
- Detector Optimisation Studies
- 8 Current Limitations
- **9** Outlook

Conclusions

● ILC Physics ↔ Calorimetry

ILC PHYSICS:

Precision Studies/Measurements

- ★ Higgs sector
- ★ SUSY particle spectrum
- **★** SM particles (e.g. W-boson, top)
- ★ and much more...

Physics characterised by:

High Multiplicity final states often 6/8 jets

★ Small cross-sections

e.g. _σ(e⁺e⁻→ZHH) = 0.3 fb

Σqq 10 6 tt 175 GeV 5 (fb) 10 ³ Zh 120 GeV HA 1 300 GeV 0 200 400 600 800 1000

 \sqrt{s} (GeV)

Require High Luminosity Detector optimized for precision measurements in difficult multi-jet environment

Compare with LEP

*Backgrounds dominate 'interesting' physics
 *Kinematic fitting much less useful: Beamsstrahlung + final states with > 1 neutrino

Physics performance depends critically on the detector performance (not true at LEP)

Places stringent requirements on the ILC detector

Calorimetry at the ILC

Jet energy resolution:

Best at LEP (ALEPH): $\sigma_{E}/E = 0.6(1+|\cos\theta_{Jet}|)/\sqrt{E(GeV)}$

ILC GOAL:
$$\sigma_{E}/E = 0.3/\sqrt{E(GeV)}$$

THIS ISN'T EASY !

***** Jet energy resolution directly impacts physics sensitivity

Reconstruction of two di-jet masses allows discrimination of WW and ZZ final states

NOTE: this is fast simulation not full MC

Often-quoted Example:

If the Higgs mechanism is not responsible for EWSB then QGC processes important e⁺e⁻→_{VV}WW→_{VV}qqqq, e⁺e⁻→_{VV}ZZ→_{VV}qqqq

★ EQUALLY applicable to any final states where want to separate
 W→qq and Z→qq !

ALCPG Seminar, Fermilab 8/12/2006

Mark Thomson

The Particle Flow Paradigm

- Much ILC physics depends on reconstructing jet-jet invariant masses
 Often kinematic fits won't help Unobserved v, Beamsstrahlung, ISR
- **★** Aim for jet energy resolution ~ Γ_z for "typical" jets

★ If we assume
$$\sigma_{E}/E = \alpha/\sqrt{E(GeV)}$$

Di-jet mass resolution is approx. $\sigma_m/m = \alpha/\sqrt{E_{jj}}$ (GeV)

★ For typical ILC jet pair energies (200 GeV)

→ σ_E/E ~ 0.3/√E(GeV)

★ Jet energy resolution is the key to calorimetry at the ILC

★ Widely believed that PARTICLE FLOW is the best way to achieve this

The Particle Flow Analysis (PFA):

Reconstruct momenta of individual particles avoiding double counting

Charged particles in tracking chambers Photons in the ECAL Neutral hadrons in the HCAL (and possibly ECAL)

Need to separate energy deposits from different particles Not calorimetry in the traditional sense

Mark Thomson

★ TESLA TDR achieved resolution for Z→uds at rest of ~0.30 $\sqrt{E_{iet}}$

Component	Detector	Frac. of jet energy	Particle Resolution	Jet Energy Resolution
Charged Particles (X [±])	Tracker	0.6	10 ⁻⁴ E _x	neg.
Photons (γ)	ECAL	0.3	0.11√E _γ	0.06√E _{jet}
Neutral Hadrons (h ^o)	HCAL	0.1	0.4√E _h	0.13√E _{jet}

★ Energy resolution gives $0.14\sqrt{E_{jet}}$ (dominated by HCAL)

Calorimetric performance not the limitation !

 In addition, have contributions to jet energy resolution due to "confusion", i.e. assigning energy deposits to wrong reconstructed particles. This leads to double-counting or incorrectly merging neutrals in to charged showers

$$\sigma_{jet}^{2} = \sigma_{x^{\pm}}^{2} + \sigma_{\gamma}^{2} + \sigma_{h^{0}}^{2} + \sigma_{confusion}^{2} + \sigma_{threshold}^{2} + \dots$$

★ Single particle resolutions not the dominant contribution to jet energy res.

granularity more important than energy resolution

PFA : Basic issues

★ What are the main issues for PFA ?

***** Separate energy deposits **+** avoid double counting

<u>e.g.</u>

★ Need to separate "tracks" (charged hadrons) from photons

★ Need to separate neutral hadrons from charged hadrons

PFA : "Figure of Merit"

- ***** Large detector spatially separate particles
- **★** High B-field separate charged/neutrals
- **★** High granularity ECAL/HCAL resolve particles

Often quoted* "figure-of-merit":

BR² Separation of charge/neutrals σ Calorimeter granularity/R_{Moliere}

★ Physics argues for : large + high granularity + 1 B
 ★ Cost considerations: small + lower granularity + 4 B

Need realistic algorithms to determine what drives PFA performance....

*But almost certainly wrong (see later)

B The ILC Calorimeter Concepts

ILC Detector Concepts:

- ILC Detector Design work centred around 4 detector "concepts"
- Each will contribute to an ILC detector conceptual design report by end of ~2006
- ★ Ultimately may form basis for TDRs
- ★ 3 of these concepts "optimised" for PFA Calorimetry SiD, LDC, GLD

GLD : Global Large Detector

LDC : Large Detector Concept (spawn of TESLA TDR)

SiD : Silicon Detector

4

SIZE + B-Field Tracker B = 3T B = 4T B = 5T C GLD *

Central Tracker and ECAL

	SiD	LDC	GLD
Tracker	Silicon	TPC	TPC
ECAL	SiW	SiW	Pb/Scint

★ SiD + LDC + GLD all designed for PFA Calorimetry !

* also "4th" concept designed for more "traditional" approach to calorimetry !

LDC/SiD Calorimetry

ECAL and HCAL inside coil

ECAL: silicon-tungsten (SiW) calorimeter:

- Tungsten : X₀ /λ_{had} = 1/25, R_{Moliere} ~ 9mm (gaps between Tungsten increase effective R_{Moliere})
- Lateral segmentation: ~1cm² matched to R_{Moliere}
- Longitudinal segmentation: 30 layers (24 X_0 , 0.9 λ_{had})
- Typical resolution: $\sigma_{E}/E = 0.15/\sqrt{E(GeV)}$

Very high longitudinal and transverse segmentation

Hadron Calorimeter

Again Highly Segmented – for Particle Flow

- Longitudinal: ~40 samples
- 4 5 λ (limited by cost coil radius)
- Would like fine (1 cm² ?) lateral segmentation
- For 10000 m² of 1 cm² HCAL = 10⁸ channels cost !

Two Main Options:

 ★ Tile HCAL (Analogue readout) Steel/Scintillator sandwich Lower lateral segmentation
 ~ 3x3 cm² (motivated by cost)
 ★ Digital HCAL

High lateral segmentation

~ 1x1 cm²

digital readout (granularity) RPCs, wire chambers, GEMS...

OPEN QUESTION

The Digital HCAL Paradigm

• Sampling Calorimeter: Only sample small fraction of the total energy deposition

 Energy depositions in active region follow highly asymmetric Landau distribution

GLD Calorimetry

- ★ ECAL <u>and</u> HCAL inside coil
- ★ W-Scintillator ECAL sampling calo.
- Pb-Scintillator HCAL sampling calo.

Initial GLD ECAL concept:

- Achieve effective ~1cm x 1cm segmentation using strip/tile arrangement
- *****Strips : 1cm x 20cm x 2mm
- Tiles : 4cm x 4cm x 2mm

Big question of pattern recognition in dense environment

SiD/LDC/GLD : Basic design = sampling calorimeter

Calorimeter Reconstruction

- High granularity calorimeters <u>very different</u> to previous detectors (except LEP lumi. calorimeters)
- * "Tracking calorimeter" requires a new approach to ECAL/HCAL reconstruction

+PARTICLE FLOW

ALCPG Seminar, Fermilab 8/12/2006

Mark Thomson

★ The rest is VERY DIFFICULT ! For example:

★ Wish to compare performance of say LDC and SiD detector concepts

e.g. tt event in LDC

e.g. tt event in SiD

- **★** However performance = DETECTOR + SOFTWARE
- **★** Non-trivial to separate the two effects
- * NEED REALISTIC SIMULATION + REALISTIC <u>RECONSTRUCTION</u> !
 - can't use fast simulation etc.

Need sophisticated reconstruction before it is possible to start full detector design studies

Significant effort (~6 groups developing PFA reconstruction worldwide)

For this talk concentrate on: PandoraPFA

- This is still work-in-Progress but does a pretty good job
 + beginning to get a better feel for what really matters....
- Will give a fairly detailed description of the algorithm and highlight the short-comings
- Then discuss some first detector optimisation studies

*Born in the USA : Snowmass 2005

European Software Framework

What software is needed?

What exists now?

PandoraPFA Overview

- ★ ECAL/HCAL reconstruction and PFA performed in a single algorithm
- **★** Keep things fairly generic algorithm
 - applicable to multiple detector concepts
- **★** Use tracking information to help ECAL/HCAL clustering
- ★ This is a fairly sophisticated algorithm : ~8000 lines of code
- Will discuss this in some detail illustrates practical issues for PFA reconstruction

Six Main Stages (soon to be seven):

- i. Preparation
- ii. Loose clustering in ECAL and HCAL
- iii. Topological linking of clearly associated clusters
- iv. Courser grouping of clusters
- v. Iterative reclustering
- vi. Formation of final Particle Flow Objects (reconstructed particles)

Preparation I: Extended Hits

- **★** Create internal ExtendedCaloHits from CaloHits
- **★** ExtendedCaloHits contain extra info:
 - ★ pointer to original hit
 - * pseudoLayer (see below)
 - ★ measure of isolation for other hits
 - ★ is it MIP like
 - ★ actual layer (decoded from CellID)
 - **★** Pixel Size (from GEAR) hits are now self describing

***** Arrange hits into PSEUDOLAYERS

- **★** i.e. order hits in increasing depth within calorimeter
- ★ PseudoLayers follow detector geometry

Preparation II: Isolation

- Divide hits into isolated and non-isolated
- *Only cluster non-isolated hits
- *****"Cleaner"/Faster clustering
- Significant effect for scintillator HCAL
- Removal of isolated hits degrades HCAL resolution
- + <u>e.g. LDC</u> 50 %/√E/GeV → 60 %/√E/GeV

Preparation III: Tracking

***Use MARLIN TrackCheater**

Tracks formed from MC Hits in TPC/FTD/VTX

- ★ Simple Helix Fit ⇒ track params
- ★ Cuts (primary tracks):
 - |d₀| < 5 mm
 - |z₀| < 5 mm
 - >4 non-Si hits
- + V₀ and Kink finding:
 - Track resolution better than cluster
 - Improves PFA performance by ~2 %

Will soon move to fully reconstructed tracks (LDCTracking)

ii) ECAL/HCAL Clustering

- **★** Start at inner layers and work outward
- ★ Tracks can be used to "seed" clusters
- **★** Associate hits with existing Clusters
- ★ If no association made form new Cluster
- ★ Simple cone based algorithm

iii) Topological Cluster Association

+By design, clustering errs on side of caution

- i.e. clusters tend to be split
- + Philosophy: easier to put things together than split them up
- + Clusters are then associated together in two stages:
 - 1) Tight cluster association clear topologies
 - 2) Loose cluster association fix what's been missed

🔆 <u>Photon ID</u>

*****Photon ID plays important role

*****Simple "cut-based" photon ID applied to all clusters

Clusters tagged as photons are immune from association procedure – just left alone

ALCPG Seminar, Fermilab 8/12/2006

Mark Thomson

★ Clusters associated using a number of topological rules <u>Clear Associations:</u>

• Join clusters which are clearly associated making use of high granularity + tracking capability: very few mistakes

Topological association : track merging

Topological Association II : Backscatters

Forward propagation clustering algorithm has a major drawback: back scattered particles form separate clusters

Topological association III : MIP segments

*Look at clusters which are consistent with having tracks segments and project backwards/forward (defined using local straight-line fits to hits tagged as MIP-like)

Apply tight matching criteria on basis of projected track [NB: + track quality i.e. chi2]

iv) Cluster Association Part II

- Have made very clear cluster associations
- Now try "cruder" association strategies
- BUT first associate tracks to clusters (temporary association)
- Use track/cluster energies to "veto" associations, e.g.

Provides some protection against "dumb" mistakes

v) Iterative Reclustering

★ Upto this point, in most cases performance is good – but some difficult cases...

At some point hit the limit of "pure" particle flow

• just can't resolve neutral hadron in hadronic shower

e.g. if have 30 GeV track pointing to 20 GeV cluster SOMETHING IS WRONG

NOTE: NOT FULL PFA as clustering driven by track momentum

This is <u>very</u> important for higher energy jets

Iterative Reclustering Strategies

Cluster splitting

Reapply entire clustering algorithm to hits in "dubious" cluster. Iteratively reduce cone angle until cluster splits to give acceptable energy match to track

- ★ Could plug in alternative clustering
- **2** Cluster merging with splitting

Look for clusters to add to a track to get sensible energy association. If necessary iteratively split up clusters to get good match.

③ Track association ambiguities

In dense environment may have multiple tracks matched to same cluster. Apply above techniques to get ok energy match.

④ "Nuclear Option" ★ If none of above works – kill track and rely on clusters alone

ALCPG Seminar, Fermilab 8/12/2006

Mark Thomson

6 Current Performance

Figures of Merit:

rms₉₀

 Find smallest region containing 90 % of events

★Determine rms in this region

E _{JET}	$\sigma_{\rm E}/{\rm E} = \alpha \sqrt{({\rm E}/{\rm GeV})}$ cosθ <0.8	
45 GeV	0.30	
100 GeV	0.37	
180 GeV	0.57	
250 GeV	0.75	

For jet energies < 100 GeV performance is probably good enough for physics studies

 Fit sum of two Gaussians with same mean. The narrower one is constrained to contain 75% of events
 Quote σ of narrow Gaussian

The current performance of the algorithm is well described by the EMPIRICAL expression:

$$\frac{\sigma_E}{E} = \frac{0.265}{\sqrt{E(\text{GeV})}} + 1.2 \times 10^{-4} E(\text{GeV})$$

Nothing deep here just current state of play

Angular Dependence

- Jet energy resolution depends on polar angle
- Degradation in endcap : nuclear interactions in TPC endplate have some impact + longer track extrapolation
- + HCAL ring not currently simulated in Mokka

 For high energy jets performance in barrel region worse at low values of |cosθ| - leakage (see later)

Recent Detector Optimisation Studies

★ From point of view of detector design – what do we want to know ?

Optimise performance vs. cost

- **★** Main questions (the major cost drivers):
 - Size : performance vs. radius
 - Granularity (longitudinal/transverse): ECAL and HCAL
 - B-field : performance vs. B
- **★** To answer them use MC simulation **+** PFA algorithm

- Need a good simulation of hadronic showers !!!
- Need realistic PFA algorithm
 - (want/need results from multiple algorithms)

This is important – significant impact on overall design of *xxx* M\$ detector !

Interpretation of results needs care – observing effects of detector + imperfect software

PFA-related Detector Design issues

★What aspects of the detector might impact PFA performance?

Main questions identified at Snowmass (in some order of priority):

- 1) B-field : Does B help jet energy resolution
- 2) Size : ECAL inner radius/TPC outer radius
- 3) TPC length/Aspect ratio
- 4) Tracking efficiency forward region
- 5) How much HCAL how many interactions lengths 4, 5, 6...
- 6) Longitudinal segmentation pattern recognition vs sampling frequency for calorimetric performance
- 7) Transverse segmentation ECAL/HCAL ECAL : does high/very high granularity help ?
- 8) Compactness/gap size
- 9) Impact of dead material
- **10)** How important are conversions, V⁰s and kinks
- 11) HCAL absorber : Steel vs. W, Pb, U...
- **12)** Circular vs. Octagonal TPC (are the gaps important)
- 13) HCAL outside coil probably makes no sense but worth demonstrating this (or otherwise)
- 14) TPC endplate thickness and distance to ECAL15) Material in VTX how does this impact PFA

e.g. B-Field at 91.2 GeV

LDC00 Detector (≈ TESLA TDR) – same event different B

Radius vs Field

- ★ Now for a more serious study...
- ★ Map out the dependence on B and outer radius of the TPC
- **★** Use LDC00 detector model with:
 - r_{tpc} = 1380-2280 mm
 - B = 3-5 Tesla

Look at jet energy resolution for Z→uds events at
 √s = 200 GeV

• √s = 360 GeV

- ★ As expected large radius/ large field does best
- **★** But not as strong an effect as might have been expected
- ★ How much due to "intrinsic detector resolution" and how much due to software deficiencies ?

F

 \propto

 $B^{0.24} R^{0.6}$

HCAL Depth and Transverse segmentation

Investigated HCAL Depth (interaction lengths)

- Generated Z→uds events with a large HCAL (63 layers)
 - approx 7 λ_{I}
- In PandoraPFA introduced a configuration variable to truncate the HCAL to arbitrary depth
- Takes account of hexadecagonal geometry

NOTE: no attempt to account for leakage – i.e. using muon hits - this is a worse case

★ Analogue scintillator tile HCAL : change tile size 1x1 → 10x10 mm²

Dotoctor Model	$\sigma_{Evis}/E = \alpha \sqrt{(E/GeV)}$		
Delector Moder	Z @91 GeV	tt@500 GeV	
LDC00Sc 1cm x 1cm	31.4 ± 0.3 %	42 ± 1 %	
LDC00Sc 3cm x 3cm	30.6 ± 0.3 %	45 ± 1 %	
LDC00Sc 5cm x 5cm	31.3 ± 0.3 %	48 ± 1 %	
LDC00Sc 10cm x 10cm	33.7 ± 0.3 %	56 ± 1 %	

Visible energy resolution

* 10x10 too coarse (can be seen clearly from display)
 * Finer granularity helps(?) somewhat at higher energies maybe better tracking of overlapping showers?

ECAL Transverse Granularity

 Use Mokka to generate Z → uds events @ 200 GeV with different ECAL segmentation: 5x5, 10x10, 20x20 [mm²]

- 20x20 segmentation looks too coarse
- For 100 GeV jets, not a big gain going from $10x10 \rightarrow 5x5mm^2$

[for these jet energies the contributions from confusion inside the ECAL is relatively small – need]

★ For a small detector: finer granularity does help

Caveat Emptor

- ★ These studies are interesting but not clear how seriously they should be taken
 - how much is due to the detector
 - how much due to imperfect algorithm

Need results from other algorithms

So what are the current deficiencies of the algorithm...?

8 Current Limitations

- Matrix of Confusion: look MC at fractions of the total energy generated in the different particle types (h[±], γ, h⁰) and compare to the reconstructed h[±], γ, h⁰ fractions
- **★** For perfect reconstruction this would be diagonal
- ★ e.g. 100 GeV uds jets (all polar angles)

★ Fragment clusters are the biggest single problem

Fragments

★ A few example events :

Green = correctly identified neutral clusters Red = reconstructed neutral clusters from charged hadron

- ★ Work in progress to explicitly identify these fragments as the last stage in the reconstruction based on:
 - cluster shape, cluster direction, …
- **★** Expect a not insignificant improvement in PFA performance

Also issues with tracking which will improve with new full track reconstruction (better track extrapolation will help)

★ Pandora Code was "released" in the Summer:

http://www.hep.phy.cam.ac.uk/~thomson/pandoraPFA

- ★ Still some work to do...
- Also working to make code compatible with SLIC and Jupiter events – clustering works well, some issues with tracking
- ★ PandoraPFA is not perfect, but does a reasonable job for jet energies < 100 GeV</p>
- ★ Can start to use it for full simulation physics studies

e.g. "classic plot"

Occurrent Conclusions

- **★** Great deal of effort (worldwide) in the design of the ILC detectors
- * Centred around 4 "detector concept" groups: GLD, LDC, SiD + 4th
- ★ Widely believed that calorimetry and, in particular, jet energy resolution drives detector design
- **★** Also believed that it is likely that PFA is the key to achieving ILC goal

THIS IS HARD – BUT VERY IMPORTANT !

- **★** Calorimetry at the ILC = HARDWARE + SOFTWARE (new paradigm)
- ★ It is difficult to disentangle detector/algorithm....
- ★ Can only address question with "realistic algorithms"
 - ★ i.e. serious reconstruction 10+ years before ILC turn-on
- ★ With PandoraPFA algorithm already getting to close to

ILC goal (for $Z \rightarrow uds$ events)

- ***** More importantly, getting close to being able to address real issues:
 - What is optimal detector size/B-field, etc.

FINAL COMMENT:

★GLD, LDC, SiD calorimetry "designed" for PFA

★ Need to demonstrate this actually makes sense !

★ not yet completely proven...!

***** Need to study in context of physics sensitivity

