

Correction of Anomalous Vertical Dispersion in the ATF2 EXT Line (v3.6)

Optics v3.5, 1 July 2006

Simulation Parameters

- use Peter Tenenbaum's Lucretia¹ simulation code
- included
 - perfect beam from Damping Ring ($\epsilon_x = 2 \times 10^{-9}$ m, $\gamma \epsilon_y = 3 \times 10^{-8}$ m) ... errors begin after extraction septa, unless otherwise noted
 - perfect Final Focus
 - dipole errors²: $\Delta Y = 100 \mu m$ (rms)
 - quadrupole errors: $\Delta X = 50 \mu m$, $\Delta Y = 30 \mu m$, $\Delta \theta = 0.3 m rad$ (rms)
 - sextupole errors: $\Delta X = 50 \ \mu m$, $\Delta Y = 30 \ \mu m$, $\Delta \theta = 0.3 \ mrad$ (rms)
 - BPM resolution: 5 µm (rms)

• not included

- wire scanner rolls: $|\theta| \leq 0.2^{\circ}$ (uniform)
- wire scanner beam size errors: $\sigma = \sigma_0(1 + \Delta \sigma_{relative}) + \Delta \sigma_{absolute}$
- quadrupole strength errors ($\Delta K/K$)
- BPM offsets
- BPM rolls
- tuning in FF

¹http://www.slac.stanford.edu/accel/ilc/codes/Lucretia/

²EXT dipoles BH1 and BH2 are assumed to have nonzero sextupole components

Simulation Procedure

- 1. apply errors
- 2. steer flat (EXT only)
- 3. launch into FF
 - use 2 virtual correctors
 - steer to 2 virtual BPMs (one at the IP and one 90° upstream)
 - virtual BPMs are perfect
- 4. measure dispersion in diagnostic section
 - scan input beam energy
 - measure orbits
 - fit position vs energy at each BPM
- 5. correct dispersion in diagnostic section
 - back-propagate measured η to start of diagnostic section to get η_0 and η'_0
 - use QF1X + QF6X multiknobs for η_x and η'_x
 - correct η_{γ} and η'_{γ} using skew quads in inflector (thin lenses at quad centers)
- 6. correct coupling
 - scan 4 skew quadrupoles sequentially
 - deduce projected ε_{y} from wire scanner measurements
 - set each skew quad to minimize projected ε_y

errors only (100 seeds)

errors, FF launch

errors, steer flat, FF launch

errors, steer flat, correct coupling, FF launch

Note: red lines represent maximum integrated strength of IDX skew quad (KLmax \approx 0.1 T)

errors, steer flat, correct η_x , correct coupling, FF launch

η_y vs η'_y at exit of KEX2 (start of diagnostic section) 100 seeds after steering EXT

η_y vs η'_y at exit of KEX2 (start of diagnostic section) perfect EXT; scan each skew quad

both η_{γ} and η'_{γ} can be corrected with any single skew quad!

 η_v correction: residual x-y coupling

$$R = \begin{bmatrix} R_{11} & R_{12} & R_{13} & R_{14} \\ R_{21} & R_{22} & R_{23} & R_{24} \\ R_{31} & R_{32} & R_{33} & R_{34} \\ R_{41} & R_{42} & R_{43} & R_{44} \end{bmatrix} \equiv \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$\mathbf{Q}_{x,y} \equiv \frac{1}{\sqrt{\beta_{x,y}}} \begin{bmatrix} \beta_{x,y} & 0\\ -\alpha_{x,y} & 1 \end{bmatrix}$$

 $\mathbf{P} \equiv \mathbf{Q}_x^{-1} \mathbf{A}^{-1} \mathbf{B} \mathbf{Q}_y$

 $\lambda = \operatorname{tr}(\operatorname{PP}^{\mathrm{T}})$

 $\varepsilon_{x}^{2} = \left|\mathbf{A}\right|^{2} \varepsilon_{x0}^{2} + \left|\mathbf{C}\right|^{2} \varepsilon_{y0}^{2} + \left|\mathbf{A}\right|^{2} \varepsilon_{x0} \varepsilon_{y0} \lambda$

 $\varepsilon_{y}^{2} = \left|\mathbf{C}\right|^{2} \varepsilon_{x0}^{2} + \left|\mathbf{A}\right|^{2} \varepsilon_{y0}^{2} + \left|\mathbf{A}\right|^{2} \varepsilon_{x0} \varepsilon_{y0} \lambda$

Scheme 1: 2 skew quads

		SQ1	SQ6
$\beta \mathbf{x}$	=	5.920	10.036
αx	=	4.480	-5.320
ηx	=	0.585	-0.566
βγ	=	9.053	11.557
αγ	=	-7.212	6.631
Δμχ	=	-	343.575
Δμγ	=	-	179.568
kl/klmax	=	0.221	-0.178
residual	=	0.5288	

Scheme 2: 2 skew quads

		SQ2	SQ5
βx	=	14.557	13.494
αx	=	-18.187	18.354
ηx	=	0.177	-0.174
βу	=	118.109	119.830
αy	=	10.711	-12.069
Δμχ	=	-	5.337
Δμγ	=	-	172.957
kl/klmax	=	0.023	0.001
residual	=	0.0442	2

Scheme 3: 2 skew quads

		SQ3	SQ4
βx	=	101.073	101.000
αx	=	-34.197	34.920
ηx	=	0.209	-0.209
βγ	=	28.629	28.649
αγ	=	22.275	-22.484
Δμχ	=	-	2.362
Δμγ	=	-	171.062
kl/klmax	=	0.036	0.006
residual	=	0.1318	3

Scheme 4: 4 skew quads

Scheme 5: 4 skew quads

Mark Woodley, SLAC

Scheme 6: 4 skew quads

Scheme 7: 3 skew quads

Scheme 8: 3 skew quads

Conclusions

- simulated system performance is adequate for the achievement of ATF2 goal "A" (35 nm IP σ_v)
- if small assumed quadrupole roll errors and vertical dipole misalignments are the only sources of coupling, skew correction seems unnecessary
- if quadrupole roll errors are increased by a factor of 10, coupling correction provides 20% improvement in IP σ_v