

The Detector DCR

Akiya Miyamoto, KEK May 30, 2007

For the editors: T.Behnke, C.Damerell, J.Jaros, A.Miyamoto and many colleagues who contributed

DCR History

- Preparation of the detector DCR has started since LCWS2006, Bangalore
- Four editors have worked together with authors of each section/sub sections to prepare texts.
- The preliminary version has been open to the community after Beijing WS.

Web: http://www.linearcollider.org/wiki
Comment E-mail: dcrcomment@desy.de

Though the detector DCR is not fully complete, start soliciting comments from the community (external reviewers) since early April(May).

Contents

In this talk, an overview of the Detector DCR and a plan towards the final version are reported

I apologies in advance for topics which are not mentioned. They are equally important. Please read the DCR

The goal of the Detector DCR

- Make the case that detectors can do the ILC physics
- Show detector designs are within our reach
- Show where we are in detector developments and where we are going

- DCR is not a complete description of a detector
- Not a review of ILC Detector Concepts

Detector Concepts

 Detector DCR is based on Detector Outline Documents (DODs) and studies since then, but a little focus on concept specific issues

Contents of DCR

- Challenges for Detector Design and Technology
- Detector Concepts
- Machine Detector Issue
- Subsystem Design and Technologies
- Sub Detector Performance
- Integrated Physics Performance
- The Case for two Detectors
- Costs
- Options

Goal of ILC Physics and Detector

- ILC Physics is described in Physics chapter of DCR
- Opportunities of ILC experiments
 - □ Clean, well-defined initial state,
 - □ Trigger-less readout
 - □ Low radiation field
 - → ideal environment for precision studies and sensitive searches for faint new physics
- ILC detector design concentrate on measuring partons with high precision
 - \square Quarks/gamma \rightarrow Good jet energy measurement
 - \square Leptons (e/m) \rightarrow tracking
 - \square b/c quarks ID \rightarrow Vertexing

Ch.2 Challenges: Jet Energy Resolution

Enough resolution to separate Z and W decaying to jets

- Improvement of $\Delta E/E$ from $60\%/\sqrt{E}$ to $30\%/\sqrt{E}$ is
 - ✓ equivalent with ~40% luminosity gain in ∆Mh
 - ✓ similar gain of luminosity in $\Delta Br(H \rightarrow WW^*)$, Δg_{hhh} , ...

Challenges to the Tracking

- lacktriangle ΔM_H from dilepton recoil mass
 - \rightarrow close to the ultimate limit by \triangle Ebeam

$$\Delta P_{t}/P_{t} \le 1 \times 10^{-3} \oplus 5 \times 10^{-5} p_{t} (GeV/c)$$

- With above resolution, Ecm could be measured with \triangle Ecm ~ 20 MeV by $e^+e^-\rightarrow \mu^+\mu^-(\gamma)$ process
- $\Delta M_{slepton}$: 45% Luminosity gain, if $\Delta Pt/Pt$ improves from $8\times10^{-5}p_{t}$ to $2\times10^{-5}p_{t}$
- Br($H\rightarrow \mu^+\mu^-$) could be measured

Challenges to the Vertexing

Performance Target :

$$\Delta(IP_{r\varphi,Z}) \le 5\mu m \oplus \frac{10\mu m \cdot GeV/c}{p\sin^{3/2}\theta}$$

- Key physics measurements
 - □ For $Mh = 120 \, GeV$, $\sqrt{s} = 350 \, GeV$, $\int L dt = 500 \, fb^{-1}$ $\Delta Br.$ **s** of $H \rightarrow b\overline{b}$, $c\overline{c}$, $gg \sim 1\%$, 12%, 8%
 - Quark charge determination

$$\mathsf{Ex}.A_{\mathit{FB}}(e^+e^- \! \to \! b\overline{b}) \mathsf{for} \; \mathsf{ED} \; \mathsf{studies}$$

- Smaller beam pipe, reconstruction of low pt tracks and forward tracks are equally important.

Ch.4 MDI - Background

- Beam induced background
 - \square Disrupted beam, γs , e^+e^- pairs generated by beamstrahlung
 - Synchrotron radiation
 - Muons created by interactions between beam halo and collimator
 - \square Neutrons created from e^+e^- pairs and disrupted beam
 - \square Hadrons and muons created by $\gamma\gamma$ interactions
- Estimated background rates are below critical level so far, though final numbers are need to be "blessed" by the MDI panel

TPC hits from beamstrahlung(100BX)

Pair backgrounds ≤ 0.2%

(critical occupancy ~ 1%)

Overlay of 100 BX

MDI - Detector Integration

- Baseline: Two detectors sharing one IR push pull but detailed engineering study and demonstration of feasibility are task for EDR.
- Most of the detector assembly will take place on the surface for minimum detector hall size.
- Major challenges of detector construction
 - Easy access to the inner part of the detector, VTX, etc.
 - Design of push-pull
 - Alignment, Services of Super Conducting parts, ...
 - □ Design and integration of final Q magnets, BPMs, beam feedback, crab cavities.
 - □ Forward calorimeters and trackers, and beam pipe

Chapter 5

Subsystem Design and Technologies

Vertex Detector

- 4~6 layers of silicon pixel detectors: long barrel or with forward disks
- Major technical challenges
 - \square R_{bp} \leq 15mm, ~10⁹ pixels of size \leq 20 μ m², Layer thickness \approx 0.1%X₀
 - □ Hardness against radiation and electromagnetic interference (EMI)
 - To keep background hits occupancy low, read fast or store locally and readout later
 - □ Internal alignment: powering and cooling of the detector
- No proven technology. ~ 10 technologies are being studied

Generic pixel sensor structure

Akiya Miyamoto, KEK

The Detector DCR

Gaseous Tracker

- Gaseous tracker: TPC
 - □ Robust tracking by many 3D points
 - □ Minimum material in tracking volume
 - □ Particle ID possible
 - \square To meet the goal of $\Delta p_{+}/p_{+}$, GEM or MicroMegas are used.

Challenges ■ Minimize positive ion feedback

- □ Gas selection: low diffusion, less H atom, ...
- Operation in non-uniform magnetic field cause by Anti-DID
- Endplate design and readout electronics:
- Demonstrate performance with a large scale proto-type

International collaboration, LCTPC, is pursuing R&D

Silicon Tracker

- Silicon tracker is used as
 - Main tracker of SiD
 - □ Intermediate, Forward, Endcap Trackers of other concepts
- Silicon tracker is
 - Robust against unexpected radiation backgrounds
 - □ Fast--only one beam crossing's worth of backgrounds
 - Precise--highest resolution possible
- Challenges:
 - □ SiD case: Few layers
 - robust enough for pattern recognition?
 - Rely on other systems for k^0_L , Λ^0 , ...?
 - □ Can layers be thin enough so performance isn't degraded?
 - Is low mass structure stable, vibration free, and able to deliver high precision?

Calorimeter

- Calorimeter measures total energy of particle
 - Key detector to get good jet energy resolution

Particle Flow or Compensated Calorimeter

- ✓ Highly granular calorimeter
- ✓ Shower reconstruction is important
- Many longitudinal sampling
- ✓ Need excellent linkage to tracker

- ✓ Compensated readout
- Projected geometry
- Energy resolution is important
- ✓ Few longitudinal sampling

GLD, LDC, SiD

4th

Calorimeter R&D

- Many technologies are proposed
 - ✓ EM CAL Tungsten/Lead + Silicon, MAPS, Scinti. & Photon detector
 - ✓ HD CAL Lead/Iron + Scinti. & Photon detector, Gas & GEM or RPC
 - ✓ Dural Readout Calorimeter (Compensation)

These technologies are studied very actively.

Superconducting Magnet

- One of the major part of a detector cost
- Design
 - □ GLD, LDC, SiD: Large bore
 - □ 4th: Dual coil, no iron return yoke

	unit	CMS	GLD	LDC	SiD	4 th (In/Out)
Magnetic Field	Tesla	4	3	4	5	3.5/1.5
Coil Radius	m	3.25	4	3.16	2.65	3/4.5
Coil half length	m	6.25	4.43	3.3	2.5	4/5.5
E(stored energy)	GJ	2.6	1.6	1.7	1.4	5.7
M(cold mass)	ton	220	78	130		
E/M	kJ/kg	12.3	20	13	12	

- Experience of LHC magnets is useful. Especially, technology for CMS magnet can be applied and extended.
- More cold mass for GLD and special effort for 4th magnets will be required.

Data Acquisition

- ILC operation feature
 - Burst collision rate ~3MHz in 1ms → pipeline
 - □ ~200msec quiet time
 - → Average event rate is ~15kHz, moderate compare to LHC
 - No hardware trigger → event selection by software
 - High granularity detectors
 - Need front end zero suppression and data compression

Conceptual DAQ system details depend on the final design of sub-detector electronic components

Akiya Miyamoto, KEK

Luminosity, Energy, Polarization

- Energy & Luminosity
 - \square $\triangle E/E < 100ppm$ for Mh meas.; < 50ppm for GigaZ/W
 - \square \triangle E/E of LEP/SLC ~ 200 ppm. Need factor 2 improvement
 - Measurement outside the detector
 - Upstream : Acc. Magnet as a spectrometer: BPM R&D in progress
 - Downstream magnet, measure beam bends detecting synchrotron lights
 - □ Measurement by the detector: Energy weighted luminosity
 - Bhabha acollinearity, $\mu^+\mu^-(\gamma)$, ...
- Polarization: $\Delta P \sim 0.5\%$. Gain some if $\Delta P \sim 0.25\%$
 - Compton polarimeter before/after IP
 - \rightarrow Development of the instruments for the Compton meas. is important.

Test Beams

Detector R&D requires support by test beam resources

Facility	E (GeV)	Particle	$\rm N_{\rm beamlines}$	Availability and plans
CERN PS	1 - 15	e,h, μ	4	part of year availablility
CERN SPS	10 - 400	e,h, μ	4	part of year availablility
DESY	1-6.5	e	3	> 3 month/ year
FNAL-MTBF	1 - 120	$_{\rm p,e,h,}\mu$	1	continuous at 5% duty factor
Frascati	0.25 - 0.75	e	1	6 month/ year
LBNL	1.5, < 0.06, < 0.03	$_{\mathrm{e,p,n}}$	1	continuous
IHEP Protvino	1 - 45	e, h, μ	4	2×1 month/ year
SLAC	28.5, 1-20	e, e, π , p	1	future after 2008 unclear
	future facilitie	available		
IHEP Beijing	1.1 - 1.5	e	3	March 2008
	0.4 - 1.2	e, π , p	3	March 2008
J-PARC	< 3	e, h, μ	?	2009
KEK-Fuji	0.5 - 3.4	e	1	fall 2007, 8 month/ year

Resources are limited and optimal coordination WW is necessary.

Ch.6. Sub Detector Performance

- Studies based on full simulations on tracking, jet energy, reconstructions, vertexing,
- Each concept team has been developing their own simulator (based on Geant4) and reconstruction tool.
- Studies in progress and only possible to show snap shot of current status. In several studies, some part of analysis adopts cheated methods when appropriate.
- Just typical results are described in this chapter.
- Results will be updated by latest results shown at this workshop

Material budget of SiD Fairly complicated geometry is Defined.

Tracking

- Track finding has been studied for TPC and Silicon
 - □ TPC: ideal case, no Anti-DID, Space charges, background hits, $\eta > 99\%$ ($Z \rightarrow d\bar{d}$ at Z pole)
 - □ Silicon: Inside-out track finding (VTX→ Main Si) $\eta \sim 99\%$ if a track comes from 1cm from IP ($Z \rightarrow q\bar{q}$ at \sqrt{s} =500GeV)

Momentum resolution (fitting)

 $\Delta p_{t} / p_{t} \sim 10^{-3} \oplus 5 \times 10^{-5} p_{t} (GeV / c)$

Jet Energy Reconstruction: PFA

PFA: Echarge by tracker, CAL is used to measure only Eneutral Fine-segmented Calorimeter and sophisticated algorithm to resolve confusions in CAL is crucial! : GLD, LDC, SiD

$$\Delta E_{jet} / E_{jet} = \delta(Trac \ker) \oplus \delta(EMCAL) \oplus \delta(HDCAL)$$

 $\oplus \delta(Acceptance) \oplus \delta(Confusion)$

 $\delta(x)$: Relative Error of x

Jet Energy Resolution - Non PFA

- Dual-readout calorimeter is used to get good jet energy resolution. No longitudinal segmentation
- Method:
 - Core of jets are clustered by cone algorithm and energy is determined mainly by calorimeter
 - □ Direction of low Pt tracks are corrected using tracker information
- Got good resolution at high energy
- EM Calorimeter is yet to be implemented in the simulator

Vertexing

■ Impact parameter resolution $(\sigma_{r_{\varphi}})$ S

SiD Case

Result is consistend with the goal, $\Delta(\mathit{IP}_{r\varphi,Z}) \leq 5\mu m \oplus \frac{10\mu m \cdot \mathit{GeV}/\mathit{c}}{p\sin^{3/2}\theta}$

Vertexing: b/c tagging

Efficiency and purity for tagging b-quark and c-quark jets in Z decay by ZVTOP algorithm, TESLA detector.

- ZVTOP has been ported to Marlin (C++) framework.
 A study using Mokka simulation reproduces similar results.
 (Orsay WS, May)
- Update will be reported during this WS.

Ch. 7 Physics Performance

Studies of Higgs by recoil mass measurements

- ✓ Mokka + MarlinRec
- \checkmark Both H→e⁺e⁻ and H→ μ ⁺ μ ⁻
- ✓ Near H threshold, \(\int \sigma \cdot 250 \textit{GeV} \)

△Mh~70MeV for 50fb-1

- ✓ SiD study
- ✓ Backgrounds by ZZ and GuineaPig
- \sqrt{s} ~350GeV, 500fb⁻¹

∆Mh~135MeV

First result is encouraging , but still much room for improvement

Physics performance: Jets

Testing physics performance using a real PFA

- \checkmark A result by GLD-PFA.
- ✓ First result is encouraging but still many rooms for improvement
- ✓ Figure will be revised soon.

- ✓ A result by BRAHMS and SNARK
- ✓ Including physics backgrounds simulated by a fast simulator
- √Top width is about 30%/JE

Ch. 8 The case for two Detectors

- ✓ Competing, cross checking of results, scientific redundancy for precision measurements. >1 analysis teams for 1 detector does not create the needed level of competition and redundancy.
- √ The collider luminosity is split, but the scientific productivity
 would be significantly increased
- ✓ Maximal participation of the global particle physics community.
 One detector will not satisfy the interest
- ✓ Ensures the backup if one detector need significant down time
- ✓ Numerous historical examples where complementary experiments were critical
- ✓ ... a lots more reasons are listed and emphasized

Two complementary detectors are crucial for the ILC

Ch. 9 Costs

- Based on the work by the costing panel.
- They estimated the costs in light of the GDE costing rule, and attempt to identify breakdown and the cost drivers

- Calorimeters and magnets are cost drivers.
- The cost breakdowns are different according to how to categorize, for example, separation of M&S and man power costs.
- Overall, there is reasonable agreement among the three concept estimates.
 The total cost lies in the range of 400-500M\$ with ~20% error

Ch. 10 Options

- Detectors for experiments not in the baseline are described
- GigaZ
 - \square Luminosity ~4x10³³ cm⁻²s⁻¹ at Z pole. 10⁹ hadronic Z in one year
 - □ Event overlap probability: <1%, not a problem
 - □ Challenge:
 - Positron polarization and frequent polarity change to reduce systematics
 - Beam energy measurement: $\Delta E_b / E_b < 3 \times 10^{-5}$
- Photon Collider ($\gamma\gamma$ or e γ collision)
 - Many MDI issues
 - Crossing angle : change 14 mrad to 25 mrad
 - $\gamma\gamma$ beam dump: Need to handle ~50 % of the beam power, which can not be steered or smeared out.
 - Detector modification
 - Near beam line: Need a space for laser light and $\gamma\gamma$ extraction
 - Detector hall: Need additional space for optical cavity

Comments

- We have received many comments. We appreciate for your patient reading of premature document and sending us many valuable comments.
- We received many comments:
 - □ Text style unbalanced, missing figures and numbers, quality of some figures not good, incomplete bibliography, many typos
 - □ Descriptions and technical terms are not clear enough for people outside the ILC community.
- ◆Editors will include these comments in the next version.
- ◆There are also another class of comments, which we need some discussion and your inputs during the LCWS2007 are crucial.

Comments on Jet Energy Resolution

■ "Do we need 30%/JE for a high energy jet?"

$$\frac{\Delta M_{12}}{M_{12}} \sim \frac{1}{2} \left(\frac{\Delta E_1}{E_1} \oplus \frac{\Delta E_2}{E_2} \right) \qquad \frac{\Delta E}{E} \sim \frac{\alpha}{\sqrt{E}} \oplus const.$$

- \checkmark "If E₁ ≠E₂, the lower energy jet dominates ΔM/M. ΔE/E is more important than α"
- ✓ "For W/Z separation, $\Delta E/E \approx 3\sim 4\%$ would be OK. "

Counterarguments

- \checkmark "Physics studies has assumed, $\alpha\%/\text{JE}$. No study assuming constant $\Delta \text{E/E}$ yet."
- ✓ "PFA performance will improve with times"
- ✓ "We should keep the original argument for the DCR"

Please give us your comments during LCW52007

Comments on Tracking

■ "Do we need the momentum resolution, $\Delta Pt/Pt$, which is significantly better than $1\times10^{-3}\oplus5\times10^{-5}Pt$?"

Physics motivation of good momentum resolution

- ✓ Higgs mass from Dilepton recoil mass
- ✓ Slepton mass by end-point measurement
- \checkmark BR(H $\rightarrow \mu^{+}\mu^{-}$)

- ✓ Run at fixed energy (higher than threshold)
- \checkmark And improve performance by extremely good $\triangle Pt/Pt$

- √Run near threshold
- ✓ And get better performance event with $\Delta Pt/Pt \sim 5x10^{-5} pt$

Please give us your comments during LCW52007

Plan

Comments

- □ Comments from the community are due now.

 We look forward to communicate with you during the LCWS2007 or send comments by e-mail to dcrcomment@desy.de
- □ The DCR Review Panel has been formed. Preliminary comments from the panel by the end of LCWS07 Final Report by the beginning of July.

Plan

- □ June React to comments with additions, corrections, and editing
- □ July Draft DCR ready for FALC on July 11
- □ August Final version submitted to ILCSC in Daegu, Aug 15. Ready for formal release.

Authorship

All who

- √ have participated in the Detector Concept studies, linear collider detector R&D, or
- ✓ have an interest in the physics and detectors for ILC are invited and encouraged to sign the DCR.
- Sign up web page has prepared. People are encouraged to sign up even to the draft version

http://www-flc.desy.de/dcr/

To be shown in the author list, the author has to follow the link sent by the confirmation mail.

Summary

- Draft of the detector DCR is available on the WEB: http://www.linearcollider.org/wiki
- We will include missing parts, comments and latest results at the LCWS2007. Your comments are crucial and highly welcomed. Please send comments to <u>dcrcomment@desy.de</u>
- The revised version will be released after LCW52007. The final version is due by early July.
- Please sign up to the DCR. Web site is at http://www-flc.desy.de/dcr/