

Estimating the effects from non-linearities in the ATF extraction line

M. Alabau Pons, P. Bambade, A. Faus-Golfe, F. Zimmermann
IFIC - LAL - CERN

On-going work

Tracking studies in the ATF Extraction Line:

- Using MADX and MAD8
- Introducing multipole components for the septum and the quadrupole QM7 (from C. Spencer)

to estimate the impact on the emittance of the beam.

MADX-PTC (Polymorphic Tracking Code)

Given the transfer map from one location of the accelerator to another one in the form:

$$x_{final} = \sum x_{jklmn} x^{j} p_{x}^{k} y^{l} p_{m}^{y} \delta^{n}$$

and given the particle density at the given location, The r.m.s. beam size is given by:

$$\sigma_{final}^{2} = \sum x_{jklmn} x_{j'k'l'm'n'} \int x^{j+j'} p_{x}^{k+k'} y^{l+l'} p_{y}^{m+m'} \delta^{n+n'} \rho dv$$

The integral is performed depending on ρ and the x_{jklmn} are obtained to arbitrary order from MADX-PTC*

^{*}R. Tomás, Non-linear optimization of the BDS using MADX-PTC, EUROTeV CLIC Beam Dynamics meeting, February 2006.

MADX-PTC (Polymorphic Tracking Code)

Obtaining the contributions to the beam size from each order with MADX-PTC

Example for the non-linear collimation system for CLIC*

^{*}J.Resta, A.Faus-Golfe, D.Schulte, R.Tomás, F.Zimmermann. Non linear energy collimation system for CLIC, EUROTeV CLIC Beam Dynamics meeting, February 2006.

Tracking studies

Tracking studies with MADX and PLACET:

- taking into account the multipole components and the impedances
- for different beam offsets

The beam passes off-axis through the septum (and the quadrupole QM7)

Very preliminary results

- -Tracking with MAD8 (50000 particles)
- -With multipole components for the septum

-Reading emittance in the first wire scanner (MW0X):

Very preliminary results

$$\gamma \varepsilon_x = 5.153 \times 10^{-6} \, m \cdot rad$$

$$\gamma \varepsilon_{v} = 5.096 \times 10^{-8} \, m \cdot rad$$

Beam at MW0X (Without multipoles)

$$\gamma \varepsilon_x = 5.163 \times 10^{-6} \, m \cdot rad$$

$$\gamma \varepsilon_{v} = 5.096 \times 10^{-8} \, m \cdot rad$$

