Impact of ILC Tracker Design on e⁺e⁻ → H⁰Z⁰ → μ⁺μ⁻ X Analysis

Hai-Jun Yang & Keith Riles University of Michigan, Ann Arbor

> SiD Benchmarking Meeting December 19, 2006

Physics Motivation

➔ To determine the suitable ILC SiD tracker momentum resolution which is capable to make direct measurement of

$e^+e^- \not\rightarrow H^0Z^0 \not\rightarrow \mu^+\mu^-X$

- Based on ILC500 beam setup
- Polarization of e^- is -85%, e^+ is 0
- PandoraV2.3 (modified for $H \rightarrow \mu^+ \mu^-$ decay, thanks to Michael E. Peskin) and PythiaV3.3
- Java Analysis Studio V2.2.5
- SDMar01, Fast MC Simulation and 1000 fb⁻¹

Monte Carlo Samples

- Signal 10K
 - $e^+e^- \rightarrow H^0Z^0 \rightarrow \mu^+\mu^- X$
 - Cross section is 0.018278 fb for M_H =120 GeV
 - 18 signal events expected for 1000 fb⁻¹
- Background W⁺W⁻ $\rightarrow \mu^+\mu^-\nu\nu$ 400 K
 - Cross section is 149.68 fb
 - 149680 WW events expected for 1000 fb⁻¹
- Background $Z^0Z^0 \rightarrow \mu^+\mu^-X$ 100 K
 - Cross section is 31.6 fb
 - 31600 ZZ events expected for 1000 fb⁻¹

Preselection Cuts

ptot-mu

-0.5

0.0

0.5

Additional Selection Cuts

H→µµ: $10K \rightarrow 6442 \rightarrow 5959 \rightarrow 5780 \rightarrow 10.57$ (exp) ZZ Bkgd: $100K \rightarrow 382 \rightarrow 164 \rightarrow 141 \rightarrow 44.8$ (exp) WW Bkgd:400K $\rightarrow 1019 \rightarrow 135 \rightarrow 47 \rightarrow 17.6$ (exp)

$M_{\mu\mu}$ vs Track Momentum Resolution

ILC500, SDMar01, Z \rightarrow all, H \rightarrow µµ, 1000 fb⁻¹

H.J. Yang - SiD Meeting

Signal Events - Detection Significance

 \rightarrow The H \rightarrow µµ significance is improved with better track resolution.

Rescaling factor of	M _{µµ} -120 <0.2 (GeV)	$N_s / \sqrt{N_{bkgd}}$ (Significance)	M _{µµ} -120 <0.1 (GeV)	N _s / √N _{bkgd} (Significance)
$\Delta(1/\text{pt})$	$N_{bkgd} = 2.4, N_s$		$N_{bkgd} = 1.2, N_s$	
1.0	6.3	4.1	3.35	3.1
0.50	9.5	6.1	6.2	5.7
0.25	10.5	6.8	9.5	8.7
0.15	10.5	6.8	10.4	9.5
0.10	10.5	6.8	10.5	9.6
0.05	10.5	6.8	10.5	9.6

Branching Ratio Uncertainty

→With the SiD's nominal momentum resolution, one can measure $Br(H \rightarrow \mu\mu)$ to 47%. The precision improves only modestly with improved track resolution.

Rescaling factor of Δ(1/pt)	$ M_{\mu\mu}-120 <0.2$ (GeV) $N_{bkgd}=2.4, N_{s}$	$\sqrt{(N_s + N_{bkgd})/N_s}$ (Uncertainty)	$ M_{\mu\mu}-120 <0.1$ (GeV) $N_{bkgd}=1.2, N_s$	$\sqrt{(N_s + N_{bkgd})/N_s}$ (Uncertainty)
1.0	6.3	46.7%	3.35	63.7%
0.50	9.5	36.0%	6.2	43.9%
0.25	10.5	34.0%	9.5	34.4%
0.15	10.5	34.0%	10.4	32.7%
0.10	10.5	34.0%	10.5	32.6%
0.05	10.5	34.0%	10.5	32.6%

Higgs Mass Resolution & Accuracy

→Better Higgs mass resolution with better track resolution.

Rescaling factor of $\Delta(1/\text{pt})$	Mass resolution (MeV)	Mass Accuracy (GeV)	$\chi^2/$ n.d.f
1.0	239.6 ± 140.9	120.0 ± 0.09	0.10 / 67
0.50	117.6 ± 63.3	120.0 ± 0.12	0.065 / 37
0.25	59.9 ± 16.3	120.0 ± 0.09	0.046 / 27
0.15	36.6 ± 9.5	120.0 ± 0.09	0.044 / 17
0.10	25.4 ± 6.4	120.0 ± 0.09	0.074 / 15
0.05	13.8 ± 3.6	120.0 ± 0.1	0.022 / 5

Fit $M_{\mu\mu}$ Distributions

Fit $M_{\mu\mu}$ Distributions

Fit $M_{\mu\mu}$ Distributions

Preliminary Conclusions

→ With the SiD's nominal track momentum resolution, one can establish detection of $H \rightarrow \mu\mu$ with 4-sigma significance and can measure $Br(H \rightarrow \mu\mu)$ to 47%.

The detection significance improves significantly with improved track momentum resolution, but branching ratio of $H \rightarrow \mu\mu$ improves only modestly.