

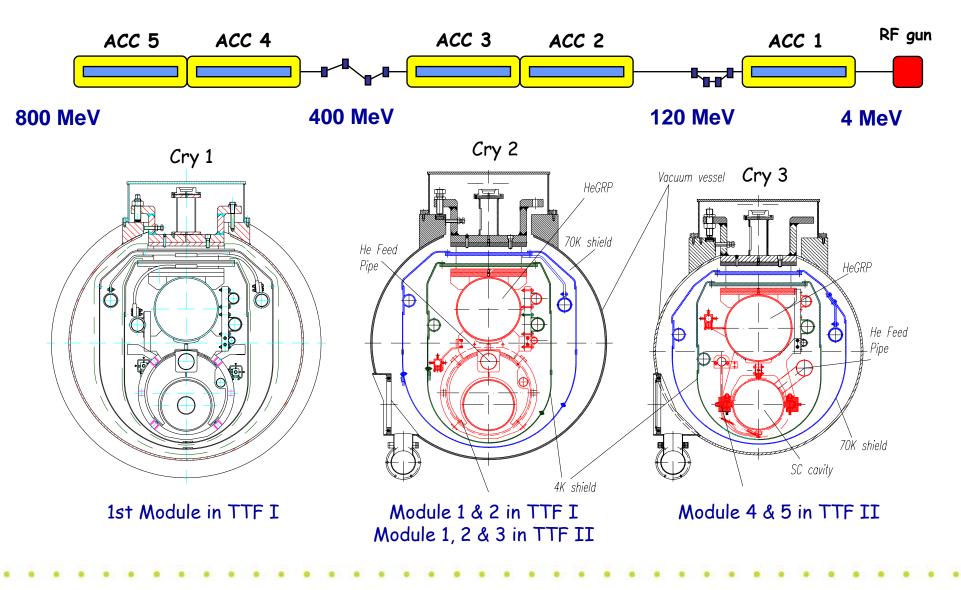
The Evolving ILC Project The Cryomodule from TTF/TESLA to the ILC RDR

Carlo Pagani University of Milano INFN Milano-LASA & GDE

TESLA Cryomodule Design Ratinales

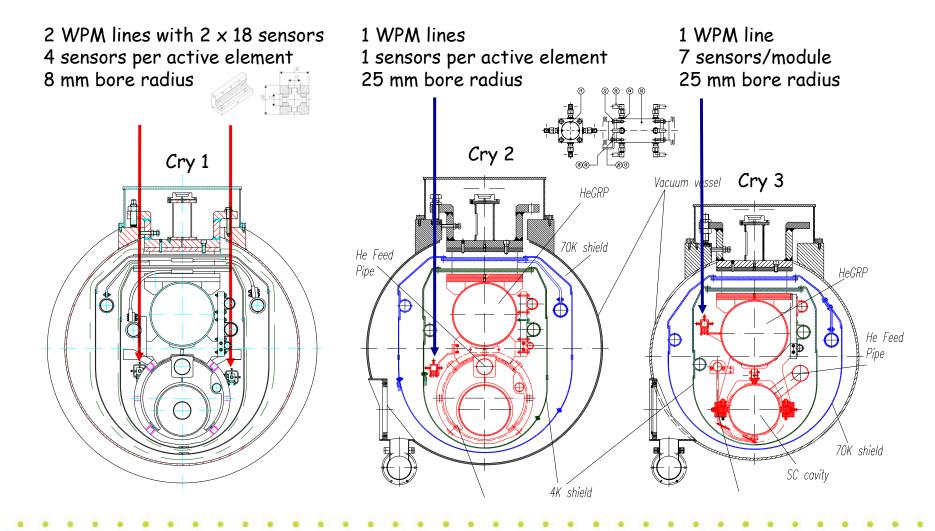
- High Performance Cryomodule was central for the TESLA Mission
 - More then one order of magnitude was to be gained in term of capital and operational cost
- High filling factor: to maximize real estate gradient
 - Long sub-units with many cavities (and quad): cryomodules
 - Sub-units connected in longer strings
 - Cooling and return pipes integrated into a unique cryomodule
- Low cost per meter: to be compatible with a long TeV Collider
 - Cryomodule used also for feeding and return pipes
 - Minimize the number of cold to warm connections for static losses
 - Minimize the use of special components and materials
 - Modular design using the simplest possible solution
- Easy to be alligned and stable: to fullfil beam requirements

Performing Cryomodules in TTF


Three cryomodule generations to:

- improve simplicity and performances
- minimize costs "Finger Welded" Shields **Reliable Alignment Strategy** Sliding Fixtures @ 2 K

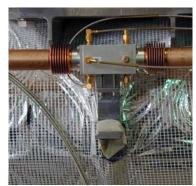
Required plug power for static losses < 5 kW/(12 m module)

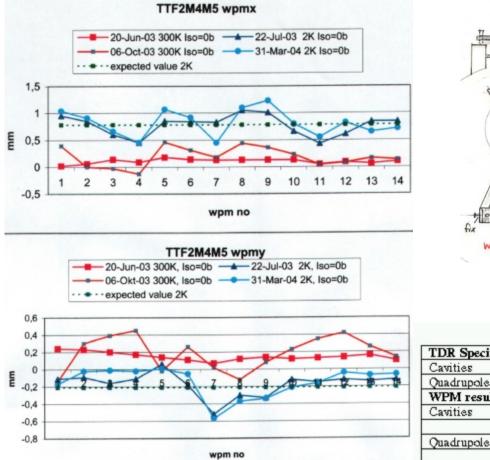

3rd T4CM, LASA, 22 Jan 2007

Three Cryomodule Generations in TTF

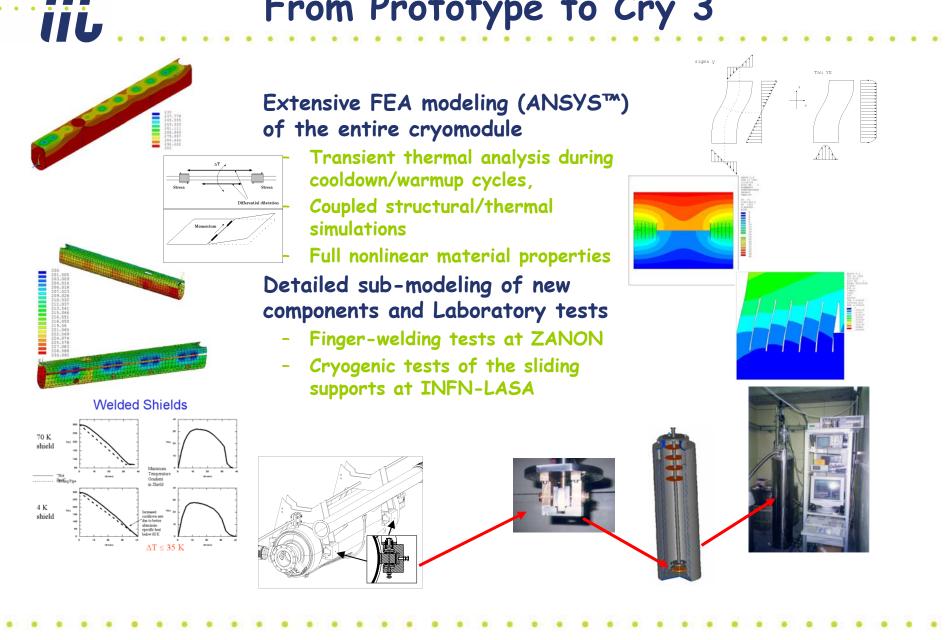
WPM = Wire Position Monitor

On line monitoring of cold mass movements during cool-down, warm-up and operation




ACC4 & ACC5 Met Specs

ir

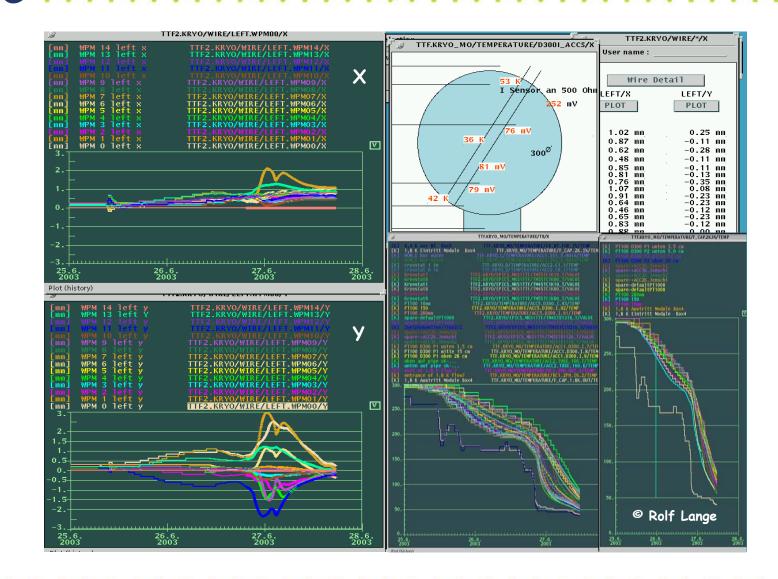


Taylor-Hobson	Ay Detail wpm Warm Gla X
300mm He GRP	Vacuum Vessel
fix Warm Kawity Magnet	Coupler Port

Tal	ale 1: Resul	t Summary.
TDR Specifica	tions (rms)	
Cavities	x/y	± 0.5 mm
Quadrupoles	x/y	± 0.3 mm
WPM results ((peak)	
Cavities	x	+ 0.35/- 0.27 mm
	у	+ 0.18/- 0.35 mm
Quadrupoles	x	+ 0.2/- 0.1 mm
	У	+ 0.35/- 0.1 mm

- Still some work at the module interconnection
- Cavity axis to be properly defined

From Prototype to Cry 3



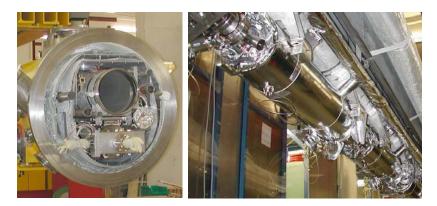
3rd T4CM, LASA, 22 Jan 2007

ilr

Carlo Pagani

Safe Cooldown of ACC4 and ACC5

3rd T4CM, LASA, 22 Jan 2007


ĪĪĿ

Very Low Static Losses

					_			Status:15	-Sep-04 R.I			
Designe	d	, estin	nated	and n	ne	asure	d stati	c Cryo	-Loads	TTF-	Module	s in TTF-Linac
Module		40/80 K [W]		4.3K [W]		ŋ		2 K [W]			Notes	
Name/Type		Design	Estim.	Meas		Design	Estim.	Meas.	Design	Estim.	Meas.	
Capture				46,8				3,9			5,5	Special
Module 1	1	115.0	76.8	90.0	*	21.0	13,9	23.0	* 4,2	2,8	6,0 *	Open holes in isolation
Modul1 rep.	1	115.0	76.8	81,5		21.0	13,9	15,9	4,2	2,8	5,0	2 end-caps
Modul 2	11	115.0	76.8	77,9		21.0	13,9	13.0	4,2	2,8	4,0	2 end-caps
Module 3	11	115.0	76.8	72.0	**	21.0	13,9	48.0	** 4,2	2,8	5,0	Iso-vac 1E-04 mb, 2e-cap
Module 1*	11	115.0	76.8	73.0		21.0	13,9	13.0	4,2	2,8	<3.5	1 end-cap
Module 4	III	115.0	76.8	74		21.0	13,9	13.5	4,2	2,8	<3.5	1 end-cap
Module 5		115.0	76.8	74		21.0	13,9	13.0	4,2	2,8	<3.5	1 end-cap
Module SS		115.0	~76.8	72.0		~21.0	~13.9	12.0	-4.2	>2,8	4,5	Special, 2 end-caps
Module 3*	11	115.0	76.8	75		21.0	13,9	14	4,2	2,8	<3.5	1 end-cap
Module 2*	11	115.0	76.8	74		21.0	13,9	14,5	4,2	2,8	<4,5	2 end-caps
Module 6 EP	•	Type III, EP-Cavities Goal:Solution close to XFEL Modules										(Assembly End-04??)
		Design and estimated values by Tom Petersen 1995 -Fermilab- Modules under T									s under Te	st in TTF2-Linac

Cryomodules installed in TTF II

800 MeV

400 MeV

120 MeV

4 MeV

3rd T4CM, LASA, 22 Jan 2007

Carlo Pagani

- Improving quadrupole package stability
 - 2 K quadrupole package
 - Quadrupole placed in the module center
 - Sliding hanging as for cavities
- Improving linac filling factor
 - Inter-cavity spacing reduced to a possible minimum: 283 mm
 - 12 cavities per cryomodule instead of the 8 in TTF
 - Inter-module spacing reviewed, including HOM absorber
- Reviewing cooling pipe size for TESLA 800
 - Conceived inside the available margins
 - Not really studied at the time of the TDR

- Type III cryomodule is maintained as the reference
 - INFN drawing moved to 3D for modifications
- Some modifications and improvements are in progress:
 - Cavity spacing adapted to be equal to 3/2 λ
 - Module interconnection reviewed
 - Odd integer number of $\lambda/2$ has to be respected
 - HOM absorber integrated, Ti/SS connections reviewed
 - Possible improvements on subcomponents
 - Work mostly independent from ILC
 - Some suggestion from industry is expected
- Two new Type III module fabricated
 - Complete documentation for possible new suppliers
- Industrial Studies for technology transfer and cost saving

Same general criteria than in the TESLA TDR

- Quadrupole package at the module center
- Cavity spacing as for TESLA
- Module interconnection includes HOM absorber

but:

- •8 cavities per cryomodule instead of 12
- Pipe size reviewing for the highest heat load

and:

- Design performed in a full international collaboration
- Specifications consistent with all regional rules
- Subcomponent reviewing for cost reduction still important

- Change request presented to CCB on October 30, 2006:
 - Change of the cryomodule (CM) layout driven by each of the 10MW klystron RF unit. Previously, with two 8-cavity CM without a magnet and one 8-cavity CM with a magnet. Now, with two 9-cavity CM without a magnet and one 8-cavity CM with a magnet.
 - Reduce cryogenic power by 13%
- CCB, after a deep analysis and discussion, on November 28 suggested to EC to not accept this CCR#20.
- Because of its cost saving impact EC represented the same proposal, including a modification of the beam parameters
- CCB is now approving this change proposal, with the exclusion of the reduction of safety margin on cryogenics

• No consequences for the cryomodule with quadrupole

• Redrawing the cryomodule without quad with 9 cavities

Note

The two module have now a slightly different length **But** The two modules could easily have the same length: that's good

- Reviewing the work done so far
- Consider the preparation phase ended
- Redefine the objectives for Type IV cryomodule and prepare a challenging, but also realistic, time schedule
 - Which changes are included in the Type IV ?
 - Which changes are postponed to the ILC prototype ?
- Who is doing what ?
- How stuff are shared and integrated into the EDMS?
- How the control is done to preserve cost and performances ?
 - 3D general drawing
 - Regional 2D cuts with tolerances
 - Material and fabrication specs