

C. Pagani, N. Panzeri

INFN Sezione di Milano – LASA Milano, January 22, 2006

Blade tuner improvements

Existing Piezo Blade Tuner (june 2006)

- Different ring profile
- New blade geometry
- Review of all particulars like the bolt position, materials, piezo support

Slim Tuner (december 2006)

- New motor position
- Simpler mechanism

New driving system (in progress)

The *collinear* blade position has been preferred to the *alternate* one.

Different **blade pack**: lower number of welds and more space for fasteners.

The pin interference problem should be solved with the adoption of the new driving mechanism: no more friction and reduced backslash

INFN MI - LASA - T4CM meeting - January 2007

We want include all improvement to the new Slim Tuner.

Several blade configurations (geometry and materials) have been analyzed

Final decision on what adopt based on performance (tuning capabilities) and cost.

Combination	Geometry	Material
A	Original	Ti
В	Original	AISI 316
С	New	Ti
D	New	AISI 316
Е	New thin	AISI 316

-	b	llen	-
blHor	plant		P/Cer
	itTh	_blWid	

Configuration	blHor	blCla	blVer	blLen	blRad	blWi	blTh
Original	12	8	7.5	56	15	15 ^a	.5
New	12	8	10	66	15	16	.5
New thin	12	8	10	66	15	16	.2

Static analyses

Buckling analyses

Non-linear analyses

Combination	Limit load in stressed state	Max load without plastic strains	Limit load in non- stressed state	Buckling load (undeformed state)	
А	786	709	669	427	
В	527	0 (plastic strains)	481	704	
С	486	456	496	290	
D	480	0 (plastic strains)	424	479	
E	46	39	43	31	

FE Results

Tuner type	Blade type	Pre Blade adopted Admissible axial load (N)		Expected blade stiffness (kN/mm)		
Existing	А	$2x2x(2x23)^{*}$	20510	298		
Slim alternate ^{\dagger} C	С	2x2x(3x8)	7776	130		
Slim alternate E	Е	2x2x(10x14)	4200	138		

Choices

Improved tuning capabilities (50% more expected)

- •40% lighter (if in Titanium)
- •We plan fatigue tests on blades

New driving system: experimental test

- A preliminary test has been performed
- A screw mechanism substitutes the motor
- Several dial gauges have been used to monitor the displacements
- TTF tuner rings used

New driving system: experimental test

Position of dial gauges (1 to 6 vertical direction)

gauge position	1	2	3	4	5	6	7	8
Start position (mm/100)	0	0	0	0	0	0	0	0
1 st step (mm/100)	12	10	12	13	12	12	-33	-33
2^{nd} step (mm/100)	22	22	22	23	23	23	-62	-63
3^{rd} step (mm/100)	32	31	32	33	33	33	-89	-91
4 th step (mm/100)	41	41	41	41	42	43	-116	-119
5 th step (mm/100)	50	50	50	50	51	51	-143	-146
6^{th} step (mm/100)	59	61	59	59	61	61	-171	-177
7 th step (mm/100)	67	68	66	66	68	69	-193	-196

Table 1: gauge acquisition

- The vertical displacements are almost the same in all the points monitored
- Optimal behavior with the lateral actuator

T4CM meeting – January 2007

Т

INFN MI - LASA

New driving system: finite element simulation

- On the new geometry a FE simulation has been performed with the right motor position
- Check of axial (X) and in plane (Y, Z) displacements

New driving system: finite element simulation

4833

0.303

0.586

0.971

1.310

1.730

2.042

New driving system: finite element simulation

January 2007

I

T4CM meeting

LASA -

INFN MI -

- an effort has been done in order to:
 - reduce the weight of the tuner
 - reduce the cost
 - improve the driving mechanism
 - improve the tuning range
- the new slim tuner will be available in Ti and SS
- strength verified against the maximum expected forces
- axial force on motor: 400 N for Ti blades and 800 N for Steel blades
- expected required torque: 1.1 Nmm (Ti) and 2.2 Nmm (SS) + friction
 - the VSS52.200.2.5 motor has a maximum torque > 50 Nmm

January 2007