Last improvements in the coaxial tuner for ILC

C. Pagani, N. Panzeri

INFN Sezione di Milano - LASA
Milano, January 22, 2006

Blade tuner improvements

Modifications

The collinear blade position has been preferred to the alternate one.

Different blade pack: lower number of welds and more space for fasteners.

The pin interference problem should be solved with the adoption of the new driving mechanism: no more friction and reduced backslash

We want include all improvement to the new Slim Tuner.

Several blade configurations (geometry and materials) have been analyzed

Final decision on what adopt based on performance (tuning capabilities) and cost.

Combination	Geometry	Material
A	Original	Ti
B	Original	AISI 316
C	New	Ti
D	New	AISI 316
E	New thin	AISI 316

	Configuration	blHor	blCla	blVer	blLen	blRad	blWi	blTh
	Original	12	8	7.5	56	15	15	.5
	New	12	8	10	66	15	16	.5
	New thin	12	8	10	66	15	16	.2

FE analyses

Static analyses

Buckling analyses

Non-linear analyses

Different choices

Combination	Limit load in stressed state	Max load without plastic strains	Limit load in non- stressed state	Buckling load (undeformed state)
A	786	709	669	427
B	527	0 (plastic strains)	481	704
C	486	456	496	290
D	480	0 (plastic strains)	424	479
E	46	39	43	31

Tuner type	Blade type	Blade adopted	Admissible axial load (N)	Expected blade stiffness (kN/mm)
Existing	A	$2 \times 2 \times(2 \times 23)^{*}$	20510	298
Slim alternate ${ }^{\dagger} \mathrm{C}$	C	$2 \times 2 \times(3 \times 8)$	7776	130
Slim alternate E	E	$2 \times 2 \times(10 \times 14)$	4200	138

-Improved tuning capabilities (50\% more expected)
-40\% lighter (if in Titanium)
-We plan fatigue tests on blades

New driving system: experimental test $\mathbb{N}^{\mathbb{N} \mathbb{N}}$

- A preliminary test has been performed

INFN MI - LASA - T4CM meeting - January 2007

- A screw mechanism substitutes the motor
- Several dial gauges have been used to monitor the displacements
- TTF tuner rings used

N. Panzeri

New driving system

- Position of dial gauges (1 to 6 vertical direction)

gauge position	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Start position $(\mathrm{mm} / 100)$	0	0	0	0	0	0	0	0
$1^{\text {st }}$ step $(\mathrm{mm} / 100)$	12	10	12	13	12	12	-33	-33
$2^{\text {nd }}$ step $(\mathrm{mm} / 100)$	22	22	22	23	23	23	-62	-63
$3^{\text {rd }}$ step $(\mathrm{mm} / 100)$	32	31	32	33	33	33	-89	-91
$4^{\text {th }}$ step $(\mathrm{mm} / 100)$	41	41	41	41	42	43	-116	-119
$5^{\text {th }} \operatorname{step}(\mathrm{mm} / 100)$	50	50	50	50	51	51	-143	-146
$6^{\text {th }}$ step $(\mathrm{mm} / 100)$	59	61	59	59	61	61	-171	-177
$7^{\text {th }}$ step $(\mathrm{mm} / 100)$	67	68	66	66	68	69	-193	-196

Table 1: gauge acquisition

- The vertical displacements are almost the same in all the points monitored
- Optimal behavior with the lateral actuator

New driving system: finite element simulation ${\underset{L}{\mathbb{N}=\mathbb{N}} .}^{\text {N }}$

- On the new geometry a FE simulation has been performed with the right motor position
- Check of axial (X) and in plane (Y, Z) displacements

New driving system: finite element simulation

- Axial displacements

| | Xdisplacements (mm) at node: | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SUBSTEP | Elong. (mm) | 22731 | 22760 | 22734 | 4896 | 4924 | 4833 |
| 1 | 2.0 | 0.322 | 0.310 | 0.303 | 0.322 | 0.322 | 0.303 |
| 2 | 4.0 | 0.620 | 0.598 | 0.586 | 0.620 | 0.620 | 0.586 |
| 3 | 7.0 | 1.021 | 0.989 | 0.971 | 1.021 | 1.021 | 0.971 |
| 4 | 10.0 | 1.369 | 1.332 | 1.310 | 1.369 | 1.369 | 1.310 |
| 5 | 14.5 | 1.793 | 1.753 | 1.730 | 1.793 | 1.793 | 1.730 |
| 6 | 19.0 | 2.100 | 2.064 | 2.042 | 2.100 | 2.100 | 2.042 |

Table 4: X displacements at reference nodes

New driving system: finite element simulation

Conclusions

- an effort has been done in order to:
- reduce the weight of the tuner
- reduce the cost
- improve the driving mechanism
- improve the tuning range
- the new slim tuner will be available in Ti and SS
- strength verified against the maximum expected forces
- axial force on motor: 400 N for Ti blades and 800 N for Steel blades
- expected required torque: $1.1 \mathrm{Nmm}(\mathrm{Ti})$ and $2.2 \mathrm{Nmm}(\mathrm{SS})+$ friction
- the VSS52.200.2.5 motor has a maximum torque $>50 \mathrm{Nmm}$

