

### **ILC Cryomodule piping**

L. Tavian for the cryogenics global group



#### Distributed Heat Loads

| Temperature level          |       | 50 - 75 K | 5 - 8 K | 2 K  |
|----------------------------|-------|-----------|---------|------|
| BCD w/o contingency        | [W/m] | 18        | 1.7     | 1.3  |
| BCD with contingency       | [W/m] | 27        | 3.1     | 1.7  |
| RDR w/o contingency        | [W/m] | 13        | 1.3     | 1.0  |
| RDR with contingency       | [W/m] | 19        | 1.9     | 1.5  |
| RDR / BCD w/o contingency  | [-]   | 0.70      | 0.74    | 0.78 |
| RDR / BCD with contingency | [-]   | 0.72      | 0.72    | 0.72 |

RDR calculated heat load reduced by up to 30 % w/r to BCD assessment !!!



#### Cryomodule Piping Definition





## Distribution line interface conditions

| Interface     | Temperature<br>[K] | Pressure<br>[bar] |
|---------------|--------------------|-------------------|
| Line A inlet  | 2.8                | 1.3               |
| Line B outlet | 2.5                | 0.031             |
| Line C inlet  | 5                  | 5.5               |
| Line D outlet | 8                  | 5                 |
| Line E inlet  | 50                 | 20                |
| Line F outlet | 75                 | 18                |



# Thermal Shield Piping (E and F Lines)





# 5 K Heat Intercept & Screen (C and D Lines)





#### 2 K Cooling Loop (A and B Lines)



Line B designed for cavity temperature spread of 50 mK: 300 mm acceptable for slope up to 1 % Line A: 60 mm required for cavity cool-down



### Cryomodule Diameter Summary

| Line   | Minimum Inner Diameter [mm] (BCD value) |  |  |
|--------|-----------------------------------------|--|--|
| Line A | 60 (60)                                 |  |  |
| Line B | 300 (300)                               |  |  |
| Line C | 60 (70)                                 |  |  |
| Line D | 60 (70)                                 |  |  |
| Line E | 85 (100)                                |  |  |
| Line F | 85 (100)                                |  |  |



#### Piping and Vacuum failure

- Limit external pressure on the cavities to 2 bar warm, 4 bar cold.
- Limit the length of the vacuum loss
  - Insulating vacuum breaks every 150 m
  - Cold beam valves every 600 m
  - Helium releases from cavity into 2.5 km of 300 mm header.
  - 300 mm header volume is over 800 liters per module; the liquid helium vessel volume is 200 liters per module
- 300 mm header then acts as a huge buffer volume over the full cryogenic unit length (2.5 km).
- 12" collection header for various other flows (shield gas relief valves)
- Large external pipes not required under reasonable failure conditions



- Worst case scenario corresponds to the break of the beam vacuum with air:
  - Air condensation on a bare cold surface
  - production of heat fluxes up to 50 kW/m2
  - A large quantity of liquid helium will be vaporized and discharged in the cold pumping return pipe (line B).
- During the discharge, the cold mass structure and line B will pressurize:
  - Safety relief valves must be installed to limit the pressure build-up.
  - The spacing of the safety relief valves needed to protect the circuit depends strongly on the design pressure of the cavity cold mass structure..



- A sonic flow of air at atmospheric conditions in an 80 mm orifice (beam pipe diameter) gives a massflow rate of 1.2 kg/s.
- Taking into account the specific heat and the latent heat of liquefaction and solidification of air, the cooldown of this air flow will produce a power of about 600 kW:
  - 12 m2 of bare cold surface sufficient to exchange this power.
- The corresponding mass-flow generated by this power in a helium boiling saturated bath at 2 K is about 26 kg/s and corresponds to the flow produced at the beginning of the process.



## Thermodynamic evolution of helium in line B



### Maximum discharge flow-rate in line B

With only one discharge point at the one cryounit end



A design pressure of 4 bar at cold allows a discharge flow of 45 kg/s with a SV opening pressure of 2 bar -> i.e. a factor of about of 2 w/r to the worst case scenario

At warm, the flow is limited (max. compressor flow ~2 kg/s) -> the DP in line B will be small and compatible with a SV opening pressure of 2 bar