

T4CM Design and R&D Status at Pisa

A.Basti INFN-PISA

Milano 23-01-07

A. Basti, INFN-Pisa

✤ T4CM mechanical drawings.

R&D in progress:

New type of seal for cavity flanges.
Transition between SS and Ti.

T4CM Drawings:

Almost complete set of 2D construction drawings completed.

thanks to Assia Soukhanova (JINR-Dubna) that worked for us last year in Pisa

List of available drawings:

- Vessel_cryostat_weldment (26 drawings)
- Coldmass_sprt_cover (4 drawings)
- Coldmass_supp_fixed_assy (11 drawings)
- Coldmass_supp_sld_assy (11 drawings)
- Cold_mass_assy_T4CM:
 - **T4CM_HGR_pipe_assy:**
 - © Support_Post_assy (15 drawings)
 - HGR_pipe_wldmt (19 drawings)
 - 80K_Heat_shield_assy (9 drawings)
 - 8K_Heat_shield_assy (24 drawings)

T4CM Drawings:

Small components of "Cold_mass_ assy" and all the internal parts connected to the cavities are missing.

Very useful exercise to:

- gain detailed understanding of the whole project;
- get good understanding of tools for generation of 2D drawings from 3D

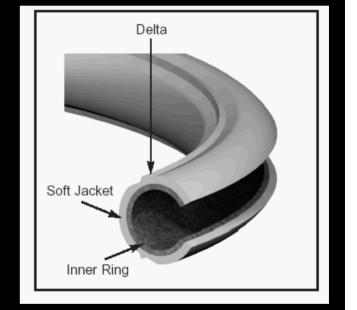
ready for fast redesign based on future version of the 3D model.

ready for integration with DESY-EDMS.

R&D on cavity flange design

Investigate the possibility to use a new type of seal with low setting load to minimize the flange dimensions.

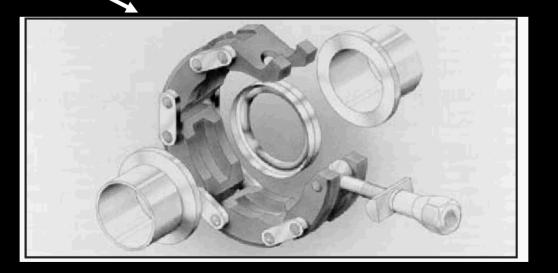
We have chosen to use for our tests :
Garlock Ultra-Flex seals.



Garlock Ultra-Flex seal

Designed for semiconductor, high purity, high vacuum applications.

- He leak rate < 1x10-9 cc/sec
- 10% load of standard metal seal
- Good for cryogenic application
- No out-gassing
- Flange surfaces stay clean
- Not magnetic
- Al coating does not peel off


Operating principle:

The Ultra-Flex o-ring relies on the deformation of the material at the Delta under the compression to fill in the micro-surface irregularities. The deformation of the soft material layer is plastic (permanent). Load of the aluminum jacketed seal is 16-30 N/mm.

Garlock Ultra-Flex seal

- The design without the spring inside (unlike the standard Helicoflex gaskets) allows cleaning up to class 10 clean room standards.
- The low setting load allows the use of a quick connection clamp.
 - (e.g. see picture with conical flanges).

Milano 23-01-07

<u>Cavity flange R&D</u> <u>Status and plan</u>

O-rings received last week \rightarrow Custom made \rightarrow about 3 mo delivery time. Preliminary tests planned: Repeat the tests made for the diamond shape gaskets in Milan: Compression test at room temperature Measure leak rate vs. compression force \blacksquare Check leak rate at LN₂ Our Use compression force optimized at room temperature Measure particulate release Sensitive particulate probes available in Pisa. If successful: Design new flange with low setting force using a lighter connection system.

Repeat basic tests with new design.

R&D on SS/Ti transition

Investigate the Stainless Steel/Ti transition to reduce the cost of Ti components in the T4-Cryomodule design.

Potential applications:

- Make SS He tank
- Make SS II-phase line
 - Connection between two Cryomodules.

Advantages:

- > The Ti price is about three times the SS.
- Ratio for bellows is even higher.
- Simpler in situ welding.

• Concerns:

- Joint strength, fragility and reliability at room/cryogenic temperature.
- SS magnetization if used close to the cavity.

SS/Ti transition

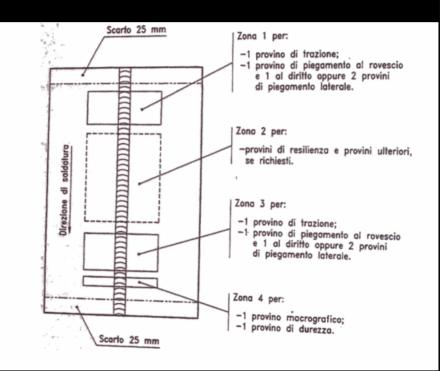
We study three welding techniques :

- Brazing with an intermediate material.
- Laser welding.
- Explosion welding.

The intermediate material is silver.

Procedure:

- A) deposit the silver on the Ti with the standard TIG technique
- → B) braze the SS to the silver with a silver brazing alloy.
- This procedure is commonly used in chemical plants.
- Preliminary tests using SS and TI tubes at company in Padova (CO.ME.C s.r.l.).
 - Joints look solid, but there are external visible defects (sample).


<u>Brazing</u>

Planned systematic tests:

- qualify the process with the UNI procedure for welds using standard flat specimens (butt weld joint on sheets).
 - Traction, bending, hardness, micrography

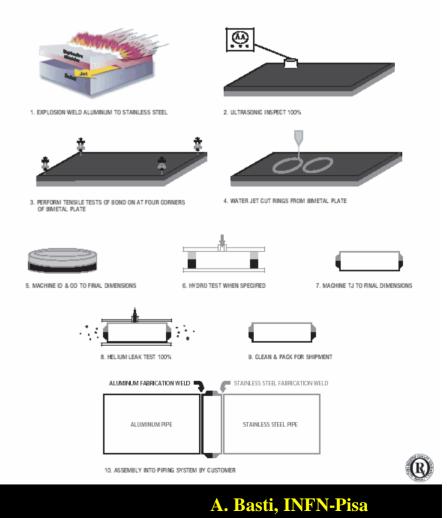
test with tubes

metallographic analysis of joints
 leak rate at room and cryogenic temperatures.

12

Laser welding

- Use laser technique on a single overlapped joint
 Ti layer on top of SS layer.
- Use Nd:YAG laser in pulse mode with a high power
 - the idea is to try to reproduce locally the concept of the explosion welding technique.
- Working with TRUMPF producer of laser welding machines
 - Waiting for the production of simple flat sheet samples according the UNI procedure.

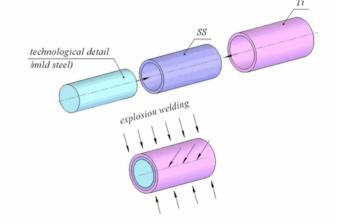

Explosion welding

 It's a well established industrial welding process commonly used to welds between different materials.

Major advantage

- "cold welding" process which is free of the physical, mechanical, and thermal limitations of traditional welding process.
- It's the standard way to obtain the common "Detacouple" Cryogenic Transition Joint between Al and SS (see picture).

DETACLAD® CRYO TJ MANUFACTURING & INSPECTION SEQUENCE



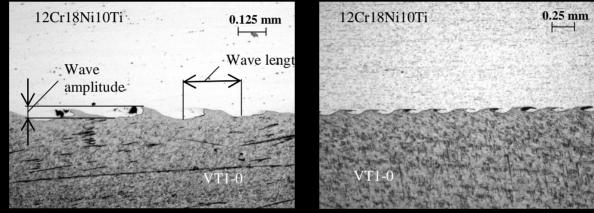
Explosion welding

- A collaboration between JINR (Dubna)
 INFN/ Pisa about this item started with the help of proof. Budagov.
 - The colleagues of JINR designed and worked with Russian company to produce the first examples of these Ti-SS joints using explosion welding.

Metallographic analysis made:

- macrography
- microanalysis
- measurement of microhardness.
- He leak tests at room and nitrogen temperatures made.

 $\underbrace{\mathbb{P}ic.}$ 1. The applied scheme of explosion welding process



Explosion welding

Detailed documentation available.

Producer conclusions:

- ▶ It's possible to produce reliable Ti/SS tube joints using this technique.
- \blacktriangleright He leak rates at room and LN2 temperatures < 1x 10⁻⁹ atm cc/sec .
- Metallographic research showed that the quality of the joint is very high.

The next steps:

- Make more samples with different type of material.
- Perform complete set of tests.

Milano 23-01-07

Issues for discussion

Cryomodule design:

- What needs to happen before 3D model is deemed adequate to restart generating 2D drawings.
- What is the development strategy until EDMS becomes really usable.
- ▶ Need a schedule update to plan all above.

✤ R&D:

Should discuss where to focus the efforts of the international design group.

Conclusion

The work about the 2D drawings is almost finished and we are ready to start working using EDMS whenever available.

Several R&D activities started.