Low Level RF and Controls

Brian Chase

- VTS
 - Cavity testing with automation stand alone PLL (TD)
- HTS
 - Dressed cavity testing Simcon based,
- HINS
 - Fast Ferite Vector Modulator 325 MHz, SNS/LBNL/FNAL
- Coupler conditioning
 - 1.3 GHz and 3.9 GHz rack and stack
- RF Unit
 - Cryomodules, RF distribution, regulation, reference line, automation - Simcon followed by FNAL design (compare and contrast)
- Photo injector for beam tests
 - Beam based calibration, beam loading, dynamic response, cryomodule stability, full system test
- Control system for control, automation, data acquisition

R&D issues in LLRF for SCRF

- RF Field Regulation
 - Maintain Phase and Amplitude of the accelerating field within given tolerances to accelerate a charged particle beam to given parameters up to 0.5% for amplitude and 0.03 deg. for phase
- Minimimize klystron Power needed for control
 - RF system must be reproducible, reliable, operable, and well understood.
 - Active Piezo tuner feedback system
 - HINS- Fast Ferite Vector Modulator control
- Other performance goals
 - build-in diagnostics for calibration of gradient and phase, cavity detuning, etc.
 - provide exception handling capabilities
 - meet performance goals over wide range of operating parameters

Challenges for RF Control

- Topics
 - Vector-Sum Calibration (Ampl. & Phase)
 - Operation close to performance limits
 - Exception Handling
 - Automation of operation
 - Piezo tuner lifetime and dynamic range
 - Optimal field detection and controller (robust)
 - Operation at different gradients
 - Defining standards for electronics (such as ATCA)
 - Interfaces to other subsystems
 - Reliability

R&D issues Controls for SCRF

- Short term development work needed
 - Multi-system
 - Provide a controls system infrastructure that can readily integrate components developed at collaborating institutions. E.g., DESY brings equipment with DOOCS interfaces, INFN with Labview, ANL with EPICS, etc.
 - Timing
 - Develop a timing and clock system that are required for first beam operation.

Longer term R&D goals

- High Availability
 - Evaluating ATCA (emerging high availability standard) as a middle layer and/or instrumentation platform
 - Evaluating middleware software techniques including such as service objects architectures for controls systems middleware.
- Scalability
 - R&D needed to configure/control/monitor a control system as complex as the ILC.
- Remote operations
 - Provide a framework which is supportive of remote operations R&D such as locking devices that are needed for autonomous operations.
- **Requirements document** is currently under construction and a first draft can be found at : http://docdb.fnal.gov/ILC-public/DocDB/ShowDocument?docid=325

LLRF Rack Detail

.

٠

.

•

. . . .

3 Cryomodule Field Controller

. .

Fermilab

٠

Sources of Perturbations

o <u>Beam loading</u>	o <u>Cavity dynamics</u>
- Beam current fluctuations	- cavity filling
- Pulsed beam transients	- settling time of field
- Multipacting and field emission	
- Excitation of HOMs	o Cavity resonance frequency change
- Excitation of other passband modes	- thermal effects (power dependent)
- Wake fields	- Microphonics
	- Lorentz force detuning
o Cavity drive signal	
- HV- Pulse flatness	o <u>Other</u>
- HV PS ripple	- Response of feedback system
- Phase noise from master oscillator	- Interlock trips
- Timing signal jitter	- Thermal drifts (electronics, power
- Mismatch in power distribution	amplifiers, cables, power
	transmission system)

. . .

Phase Reference Chain

- Master Oscillator drives fiber reference(650,1300,3900MHz)
 - Close in phase noise from MO is coherent across all systems and does not matter to first order
 - Relative phase is critical!
- Local phase distribution repeats fiber signal without narrow band filters
 - Filtering is done in the phase measurement process in the LLRF receiver
 - Narrow filters have problems with drift and microphonics
- Narrow band PLL filtering is used in the generation of the LO which is phase locked to the reference RF
 - LO noise will be driven to the cavities by the LLRF system
- Absolute phase of the reference line relative to the LO is measured over 1 ms before the RF pulse
 - Absolute phase in the LO is not important as long as it is stable over the time frame of phase measurement and the RF waveform ~ 5 ms.

Real Time Cavity Simulator

Shapes are similar, model is working.

Justin Keung, UPenn

- FNAL(CD,AD,TD), DESY, Warsaw ELHEP, KEK, ANL, LBL,SNS, SLAC, JLAB, University of Pennsylvania
- Controls: FNAL, SLAC, ANL, and possible Uofl
- Weekly telecom for Controls
- Weekly telecom for LLRF
- Weekly telecom for HLRF
- Major design efforts underway for XFEL and test string at FNAL
 - Several high performance controllers being developed
 - Master Oscillator and distribution
 - Real time Cavity Simulator

Staging LLRF and Controls

- LLRF and Controls may be staged along with other key components
 - BUT...nothing will operate without some version of these systems.
- LLRF and Controls R&D are manpower intensive rather than M&S intensive
- Reducing manpower below some critical level will seriously hinder progress
- LLRF and Controls are tasks that require sustained long term effort for the final system to be meet design goals and be cost effective
- Training new people in the field is critical to the success of any large SCRF project

- New technologies in industry allow for the development of the next generation Controls and LLRF systems
 - These next generation designs will be very flexible and will apply to light sources and other new machines
 - Control systems need green field projects to advance the state of the art
- We need these systems to achieve the stated goals of SCRF R&D here at Fermilab
 - The performance of these systems directly affect the performance of the accelerator as a whole.
- Now is the right time to be developing these systems
 - Up front R&D will pay off big in the lifetime of any project
- LLRF and Controls are on track to support the current program given the present budget profile