

ILC Reference Design Report

Barry Barish

8-Feb-07

08-Feb-07 ILCSC/ICFA Beijing **Global Design Effort**

1

Baseline Configuration -- Dec 2006

Documented in Baseline Configuration Document

08-Feb-07 ILCSC/ICFA Beijing

Baseline to a RDR

2nd Milestone – ILC Reference Design

- 11km SC linacs operating at 31.5 MV/m for 500 GeV
- Centralized injector
 - Circular damping rings for electrons and positrons
 - Undulator-based positron source
- Single IR with 14 mrad crossing angle
- Dual tunnel configuration for safety and availability

Max. Center-of-mass energy	500	GeV
Peek Luminosity	~2x10 ³⁴	1/cm ² s
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~230	MW

- E_{cm} adjustable from 200 500 GeV
- Luminosity $\rightarrow \int Ldt = 500 \text{ fb}^{-1}$ in 4 years
- Ability to scan between 200 and 500 GeV
- Energy stability and precision below 0.1%
- Electron polarization of at least 80%
- The machine must be upgradeable to 1 TeV

The RDR Design meets these "requirements," including the recent update and clarifications of the reconvened ILCSC Parameters group!

- The ILCSC Parameters Group has given updated selected clarification on accelerator requirements, based on achieving ILC science goals:
 - Removing safety margins in the energy reach is acceptable but should be recoverable without extra construction. The max luminosity is not needed at the top energy (500 GeV), however
 - The interaction region (IR) should allow for two experiments the two experiments could share a common IR, provided that the detector changeover can be accomplished in approximately 1 week.

- "Value" Costing System: International costing for International Project
 - Provides basic agreed to "value" costs
 - Provides estimate of "explicit" labor (man-hr)]
- Based on a call for world-wide tender:
 lowest reasonable price for required quality
- Classes of items in cost estimate:
 - Site-Specific: separate estimate for each sample site
 - Conventional: global capability (single world est.)
 - High Tech: cavities, cryomodules (regional estimates)

Vancouver Cost Data

System	July 1	8, 2006	6 - Cost	Estim	ates re	eceive	ed for		F	Region	al
description	common	e-	e+	DR	RTML	ML	BDS	Exp	Am	Asia	Eur
e- Source		\checkmark									
e+ Source			\checkmark								
DR				\checkmark							
RTML					\checkmark						
Main Linac											
BDS							\checkmark				
Com, Op, Reliab											
Control System					\checkmark						
Cryogenics		\checkmark	\checkmark	√ *	\checkmark		$\sqrt{*}$				
Convent. Facilities		\checkmark	\checkmark		\checkmark		$\sqrt{*}$		\checkmark		
Installation		\checkmark	\checkmark		\checkmark		\checkmark				
Instrumentation		\checkmark	\checkmark		\checkmark		\checkmark				
Cavities											
Cryomodules					\checkmark						
RF		\checkmark	\checkmark		\checkmark					\checkmark	
Magnets & PS				√ *			√ *				
Dumps & Collim					\checkmark						
Vacuum		\checkmark	\checkmark				\checkmark				
Accel Phys											

 $\sqrt{1}$ = complete, $\sqrt{1}$ * = almost complete, missing something minor

08-Feb-07 ILCSC/ICFA Beijing

Cost Roll-ups

Area Systems	e- source	e+ source	damping rings	RTML	main linac	BDS
Technical Systems		\square				\square
Vacuum systems				\Box	Δ	
Magnet systems						
Cryomodule						
Cavity Package						
RF Power						
Instrumentation						
Dumps and Collimators						
Accelerator Physics						
Global Systems						
Commissioning, Operations & Reliability						
Control System						
Cryogenics						

Cost-Driven Design Changes

Area		RDR MB	CCR	ССВ	approx. ∆\$		
BDS	2´14mr IRs	supported	14	YES	~170 M\$		
	Single IR with push-pull detector	supported	23	YES	~200 M\$		
	Removal of 2nd muon wall	supported	16	YES	~40 M\$		
ML	Removal of service tunnel	rejected			~150 M\$		
	RF unit modifications (24 ® 26 cav/klys)	supported			~50 M\$		
	Reduced static cryo overhead	supported	≻ 20	YES	~150 M\$		
	Removal linac RF overhead	supported J			~20 M\$		
	Adoption of Marx modulator (alternate)	rejected			~180 M\$		
RTML	Single-stage bunch compressor	rejected			~80 M\$		
	Miscellaneous cost reduction modifications	supported	19	YES	~150 M\$		
Sources	Conventional e+ source	rejected			<100M\$		
	Single e+ target	supported	in prep		~30 M\$		
	e- source common pre-accelerator	supported	22	YES	~50 M\$		
DR	Single e+ ring	supported	15	YES	~160 M\$		
	Reduced RF in DR (6 \circledast 9mm σ_z)	supported	in prep		~40 M\$		
	DR consolidated lattice (CFS)	supported	in prep		~50 M\$		
General	Central injector complex	supported	18(19)	YES	~180 M\$		
08-Feb-07 Global Design Effort							

08-Feb-07 ILCSC/ICFA Beijing

RDR Design & "Value" Costs

The reference design was "frozen" as of 1-Dec-06 for the purpose of producing the RDR, including costs.

It is important to recognize this is a snapshot and the design will continue to evolve, due to results of the R&D, accelerator studies and value engineering

The value costs have already been reviewed twice

3 day "internal review" in Dec
ILCSC MAC review in Jan

08-Feb-07 ILCSC/ICFA Beijing

ilr

ĪİĹ

ILC Value – by Area Systems

08-Feb-07 ILCSC/ICFA Beijing

IIL,

Explicit Manpower 13 K person-yrs = 22 M person-hrs

İİL

Value Funding Profile

08-Feb-07 ILCSC/ICFA Beijing

How Good is our Cost Estimate?

- Methodology (value costing) is a practical way of developing agreed to "international" costing.
 - Strength: Good scheme for evaluating value of work packages to divide the project internationally
 - Weakness: Difficult to sort out real regional difference from differences due to different specifications, etc
- We have spent ½ year, developing methodology, good WBS dictionary, technical requirements and costing data requested. We spent another ½ year doing cost vetting and cost / performance optimization. VERY COMPLETE COST ANALYSIS FOR THIS STAGE IN THE DESIGN

IIL.

Sanity Checks

Comparison with TESLA costs

	TESLA TDR / M€	Scaled TESLA TDR / M\$	ILC RDR / M\$	Difference / M\$				
Total Cost	3136	5018	~6500	- 1500				
Civil Facilities	676	1082	2437	1355				
Underground Buildings	383	613	1070	457				
Surface Buildings	44	70	168	98				
Consultant Engineering	10	16	160	144				
Power Distribution	34	54	275	221				
Water Cooling	70	112	374	262				
Cryogenic System	162	260	567	307				
Cryo Plant*	12 x 11	12 x 17	10 x 34.3	139				
*TESLA: 6 x 4.3 kW ILC: 10 x 3.5 kW @	@ 2 K 2 K K: 34 35 M€ for On	rogenic System						
			envervet, envernet er					
The difference is primarily in conventional facilities								
eb-07 C/ICFA Beijing	A Beijing							

- Three RF/cable penetrations every rf unit
- Safety crossovers every 500 m
- 34 kV power distribution

08-Feb-07 ILCSC/ICFA Beijing

72.5 km tunnels ~ 100-150 meters underground

13 major shafts > 9 meter diameter

443 K cu. m. underground excavation: caverns, alcoves, halls

92 surface "buildings", 52.7 K sq. meters = 567 K sq-ft total

- Design based on two 4.5m tunnels
 - Active components in service tunnel for access
 - Includes return lines for BC and sources
 - Sized to allow for passage during installation

- Personnel cross-over every 500 meters

Regional Comparisons:

Quote 2007\$ – Escalate 2006\$ by 10.6% U.S (Turner); 2-3 % other regions

ASIA	TOTAL COST=	\$2,247,562	CIVIL ONLY=	\$1,377,765	Yen to US \$	0.0085714
AMERICA	TOTAL COST=	\$2,540,439	CIVIL ONLY=	\$1,648,052	Euro to US \$	1.2
EUROPE	TOTAL COST=	\$2,493,066	CIVIL ONLY=	\$1,608,407	Euro to Yen	140
					US to Yen	116.7

How Good is our Cost Estimate?

- Cost Estimate is ~ 30% level over the RDR concept. However, there are some important limitations:
 - The estimate is for a concept or reference design, not an engineering design.
 - The design will evolve, giving concerns of future cost growth. We believe this can be compensated for by deferred potential gains from value engineering
 - Major Cost Drivers: Conventional facilities need actual site(s) for better estimates (e.g. safety, one tunnel, shallow sites, etc)
 - Major Cost Drivers: Main Linac limited because of proprietary information, regional differences, gradient, uncertainties regarding quantity discounts, etc
- Risk analysis will be undertaken following this meeting

İİL

Cost Driver - The Main Linac

Subdivision	Length (m)	Number
Cavities $(9 \text{ cells} + \text{ends})$	1.326	$14,\!560$
Cryomodule (9 cavities or 8 cavities $+$ quad)	12.652	$1,\!680$
RF unit (3 cryomodules)	37.956	560
Cryo-string of 4 RF units (3 RF units)	154.3 (116.4)	71~(6)
Cryogenic unit with 10 to 16 strings	1,546 to 2,472	10
Electron (positron) linac	$10,917\ (10,770)$	1(1)

- Costs have been estimated regionally and can be compared.
 - Understanding differences require detail comparisons industrial experience, differences in design or technical specifications, labor rates, assumptions regarding quantity discounts, etc.

İİİ.

Main Linac Gradient Choice

- Balance between cost per unit length of linac, the available technology, and the cryogenic costs
- Optimum is fairly flat and depends on details of technology
- Current cavities have optimum around 25 MV/m

Gradient	MV/m
Orautent	

	Cavity type	Qualified gradient MV/m	Operational gradient MV/m	Length Km	Energy GeV
initial	TESLA	35	31.5	10.6	250
upgrade	LL	40	36.0	+9.3	500

08-Feb-07 ILCSC/ICFA Beijing

- We have given high priority to S0 Cavity R&D program to demonstrate baseline 31.5 MV/m
- Cost impact of running the ILC linacs with a range of gradients (22-34 MV/m with an average of 28 MV/m)
 - assumes the power to the cavities is adjustable (one time only)
- The Main Linac cost increases by 11.1% and the ILC cost increases by 6.7% assuming Main Linacs are 60% of the ILC cost.

From Chris Adolphsen

TESLA cryomodule

4th generation prototype ILC cryomodule

08-Feb-07 ILCSC/ICFA Beijing

American vs European Estimate

08-Feb-07 ILCSC/ICFA Beijing

İİL

08-Feb-07 ILCSC/ICFA Beijing

 Three Documents will be presented to the joint ICFA – ILCSC meeting tomorrow, then will be posted

http://www.linearcollider.org/

- RDR Overview (Stand alone and Chapter 1)
- Draft Reference Design Report
- The International Linear Collider "Gateway to the Quantum Universe"
- Thanks to all that have contributed! A fantastic accomplishment

08-Feb-07 ILCSC/ICFA Beijing

RDR Report – Accelerator Description

RDR Companion Document

The ILC - a step-by-step guide

Electrons

İL

To produce electrons we will fire high-intensity two-nanosecond light pulses from a laser at a target and knock out billions of electrons per pulse. We will gather the electrons using electric and magnetic fields to create bunches of partides and launch them into a syo-metre linear accelerator that boosts their energy to 5 GeV.

Postrons

Fostirons, the antimatter partners of electrons, do not exist naturally on earth. To produce them we will send the high-energy electron beam through an undulator, a special arrangement of magnets in which electrons are sent on a "roller-coaster" course. This turbulent motion will cause the electrons to emit a stream of X-ray photons. Just beyond the undulator the electrons will return to the main accelerator, while the photons will hit a titanium-alloy target and produce pairs of electrons and positrons. The positrons will be collected and launched into their own asjo-metre 5-GeV accelerator.

The damping rings

When created, neither the electron nor the postron bunches are compact enough to yield the high density needed to produce copious collisions inside the detectors. We will solve this problem by using seven-bilometre-circumference damping rings, one for electrons and one for positrons. In each ring, the bunches will repeatedly traverse a series of wiggler, devices that causes the beam trajectories to 'wiggler' and emit photons. This process makes the bunches more compact. Each bunch will spend approximately two tenths of a second in its damping ring, circling roughly to goot times before being kicked out. Magnets will keep the particles on track and focussed in their circular orbits around the ring. Upon exiting the damping rings the bunches will be a few millimetres long and thinner than a human bair.

The Inacs

We will use two main linear accelerators ("linacs"), one for electrons and one for postrona, each 12 klüometres long to accelerate the bunches of particles toward the collision point. Each accelerator consists of superconducting cavities nesticed within a series of cooled vessels to form cryomodules. The modules use liquid helium to cool the cavities to 270°C, only slightly above absolute zero, it omake them superconducting. We will launch travelling electromagnetic waves into the cavities to "push" the particles through, and accelerate them to energies up to 350 GeV. Each electron and positron beam will then contain an energy of about 1 kliojoule, which corresponds to an average beam power of roughly as

The whole process of production of electrons and positrons, damping, and acceleration will repeat five times every second.

The beem delivery systems

In order to maximise the luminosity we will then focus the bunches to extremely small sizes. We will use a series of magnets, arranged along two 2-klometre beam delivery systems on each side of the collision point, to focus the beams to a few nanometres in height and a few hundred nanometres in width. The beam delivery systems will scrape off siray particles in the beams and protect the sensitive magnets and detectors. Magnets will steer the electrons and positrons into head-on collisions.

The detectors

Travelling to wards each other at nearly the speed of light, the electron and postron bunches will collide with a total energy of up to 500 GeV We will record the spectroular collisions in two giant particle detectors. These work like gigantic cameras, taking sna pshots of the fleeting particles produced by the electron-postron annihilations. The two detectors will incorports e different but complementary state-of-the-art in technologies to capture this precious information about every particle produced in each collision. Having these two detectors will allow with cross-checking of the potentially-subde physics discovery signatures.

- Three RF/cable penetrations every rf unit
- Safety crossovers every 500 m
- 34 kV power distribution

08-Feb-07 ILCSC/ICFA Beijing

CF&S Project Schedule

TENTATIVE OVERALL TIME SCHEDULE

						T ₀ = 2012						0010
	-5	-4	-3	-2	-1	+1	+2	+3	+4	+5	+6	+7
RDR/Reviews												
Bid to Host Specs												
Preparation of Bids to Host												
Site Selection Process												
Site Independent Eng. Studies (All CFS)												
EDR (All CFS)												
Selection of Main Consultants								<u> </u>				
Site Investigations												
Call for Tender Preparation (CE Works + early Services)				l A			Γ					
Call for Tender Procedure (CE Works + early Services)												
Contract(s) Placing (CE Works + early Services)												
Administrative Procedures + Site Preparation Utilities												
CE + other CFS Works												
Machine Supply, Install, Assembly												
Commissioning	• • •	• • • •	• • •	• •		• •	• •	• • •	• •	• • •	• • •	•
R&D	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mm	mm	mm	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mm		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

- We have produced the ILC RDR as planned!
- The design is completely consistent with the ILCSC physics goals and parameters
- We have produced a first version of the draft RDR that will be presented to ICFA / ILCSC tomorrow