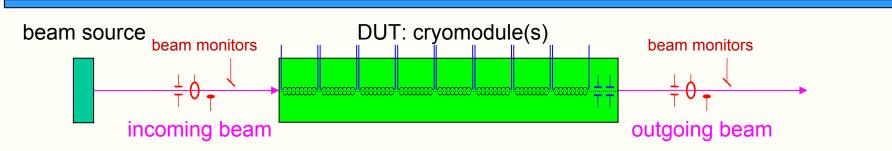
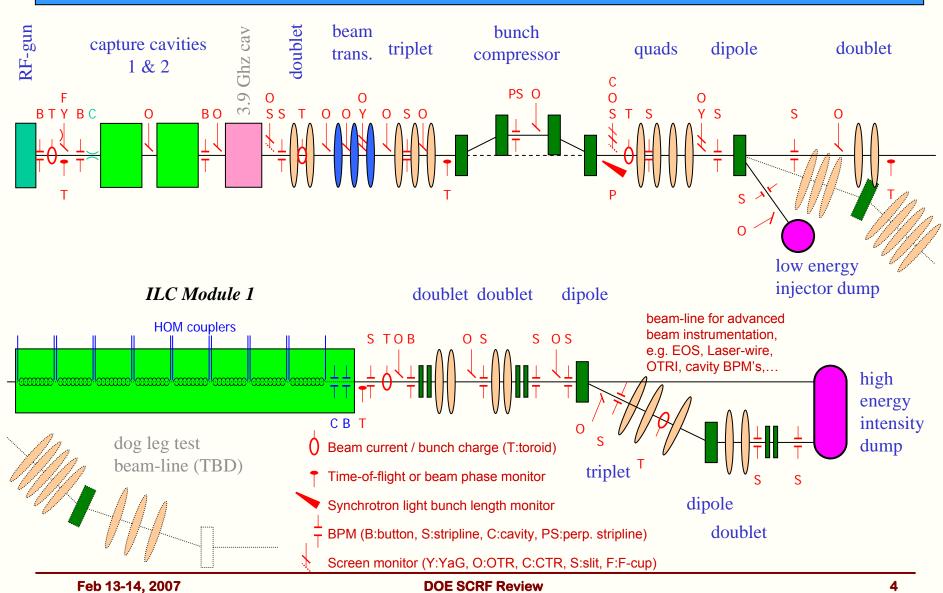
Beam Instrumentation

Manfred Wendt Fermilab

DOE SCRF Review Feb 13-14, 2007


Outline

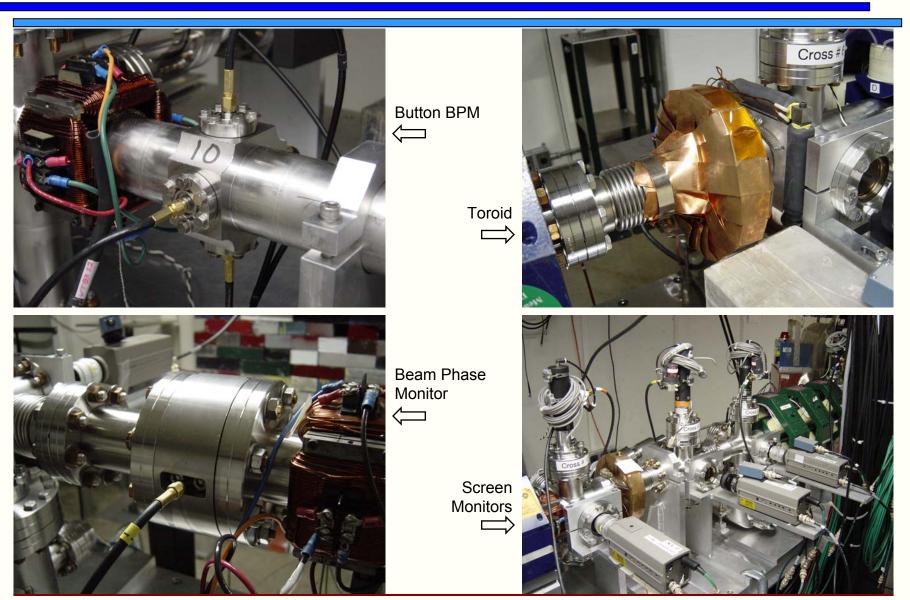
- Motivation
- NML Beam Instrumentation
 - Beam-line Overview
 - List of required Beam Monitors
- Beam Instrumentation Examples:
 - Cold Cavity-BPM
 - HOM Coupler Signal Processing
- Cost Estimation
- Conclusion


Motivation

- Characterization of the SCRF cryomodule(s) under realistic ILC-like beam conditions:
 - Using the beam as a "test instrument".
 - Beam instrumentation is used to monitor and compare upstream and downstream beam conditions.
 - Additional beam monitoring uses HOM-coupler and cold-BPM signals of the cryomodule itself.
- Beam monitors are used to characterize the beam, e.g. orbit, bunch charge, emittance, bunch length, energy, jitter, phase, etc., in order to understand sources of RF-noise, cavity misalignment, phase mismatch, and other imperfections.
- The development of a cold cavity-BPM, which is part of the cryomodule, is essential for the low-emittance beam transport.

NML Beam Instrumentation

Fermilab


NML Beam Instrumentation (cont.)

- Preliminary list of required beam instrumentation:
 - 5x toroids for bunch charge measurements.
 - ~ 20x BPM's for beam position / orbit measurements, also for beam (bunch) energy, optics and many other topics, including:
 - A cold cavity-BPM for the cryomodule (1 µm single bunch resolution)
 - A "perpendicular" stripline-BPM with EOM-based optical sampler read-out in the flat chamber of the bunch compressor (for bunch energy and horizontal position detection)
 - 4x time-of-flight (TOF) or phase monitors.
 - ~ 20x screen monitors for beam emittance, transverse particle distribution, dark current detection, etc. (OTR, YaG, slits,...).
 - Several beam monitors for bunch-length measurements (interferometer-based, RF-based, EOS-based,...).
 - HOM-coupler signal processing system.
 - A BLM-based machine protection system (MPS).
 - An ATCA-based read-out system for BPM's and toroids.
 - An EOS-based bunch-length monitor, and some other advanced beam monitors.
- Most beam monitors need to time resolve single bunch information (< 300 ns measurement / integration time).
- Some beam monitor can be reused from the NICADD A0-Photoinjector project, but most needs to be designed and build.

A0-Photoinjector Instrumentation

Feb 13-14, 2007

DOE SCRF Review

Example 1: Cold Cavity-BPM

- Requirements
 - Real estate: ~ 170 mm length, 78 mm aperture.
 - Cryogenic environment (2...10 K).
 - Cleanroom class 100 certification.
 - UHV certification.
 - < 1 μm single bunch resolution (< 300 ns measurement time).
 - < 200 µm error between electrical BPM center and magnetic center of the quad.
- Wavguide-loaded, "CM-free" cavity-BPM:
 - Waveguide-loaded pillbox with slot coupling.
 - − Dimensioning for f_{010} and f_{110} symmetric to f_{RF} , f_{RF} = 1.3 GHz, $f_{010} \approx 1.1$ GHz, $f_{110} \approx 1.5$ GHz.
 - Dipole- and monopole ports, no reference cavity for intensity signal normalization and signal phase (sign).
 - Q_{load} ≈ 600 (~ 10 % cross-talk at 300 ns bunch-to-bunch spacing).
 - Minimization of the X-Y cross-talk (dimple tuning).
 - Simple (cleanable) mechanics.

Cold Cavity-BPM: EM-Simulations

Window – Ceramic brick of alumina 96% ε _r = 9.4 Size: 51x4x3 mm		
Frequency, GHz, dipole	1.468	
monopole	1.125	
Loaded Q (both monopole and dipole)	~ 600	
Beam pipe radius, mm	39	
Cell radius, mm	113	
Cell gap, mm	15	
Waveguide, mm	122x110x25	N type receptacles,
Coupling slot, mm	51x4x2	50 Ohm,

Cold Cavity-BPM: Resolution Limit

$$V_{110}(x) = x \cdot \pi f_{110} \sqrt{Z_0 \left(\frac{1}{Q_\ell} - \frac{1}{Q_0}\right) \left(\frac{R_{sh}}{Q}\right)_{110}^{\delta x}} \frac{q}{\delta x}$$

 $V_{110}(x) = x \cdot 4.145 \cdot 10^3 \, V / nC$

 $V_{110} \approx 4 \ mV / nC \ \mu m$

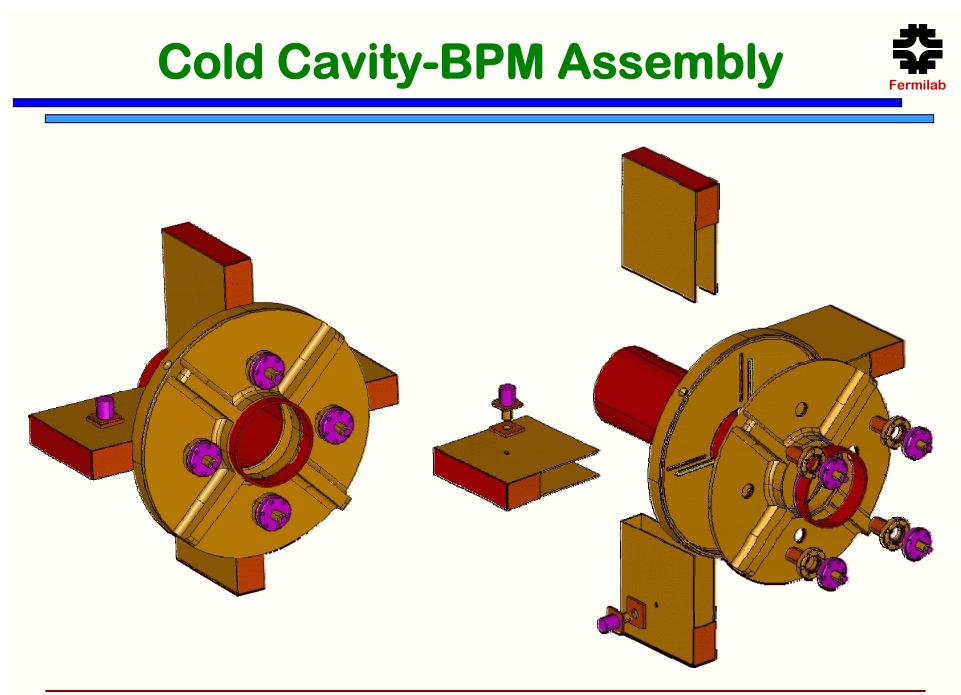
with:
$$f_{110}(x) = 1.46 \, GHz$$
$$Z_0 = 50 \, \Omega$$
$$Q_\ell \approx 600$$
$$Q_0 \approx 2000$$
$$\left(\frac{R_{sh}}{Q}\right)_{110}^{\delta x = 1mm} = 14 \, \Omega$$
$$q = 1 \, nC$$

$$V_{ThermalNoise} = \sqrt{Z_0 \ k \ T \ BW} \approx 0.7 \ \mu V$$

with: $Z_0 = 50 \,\Omega$

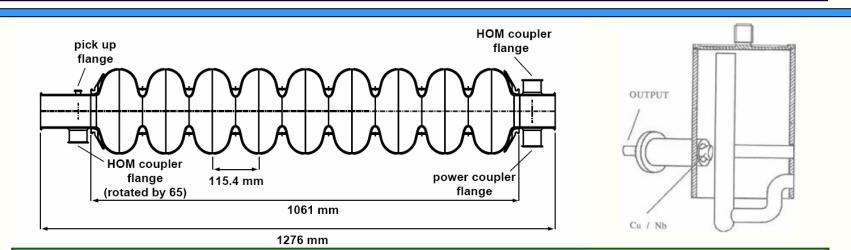
$$k = 1.38 \cdot 10^{-23} J / K$$

$$T \approx 300 \ K$$

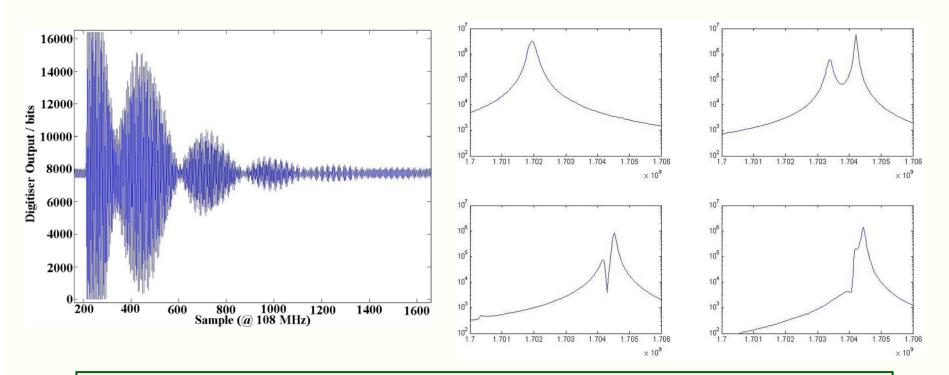

$$BW = \frac{J_{110}}{Q_{\ell 110}} \approx 2.4 MHz$$

Fermilab

Cold Cavity-BPM: Brazing Tests

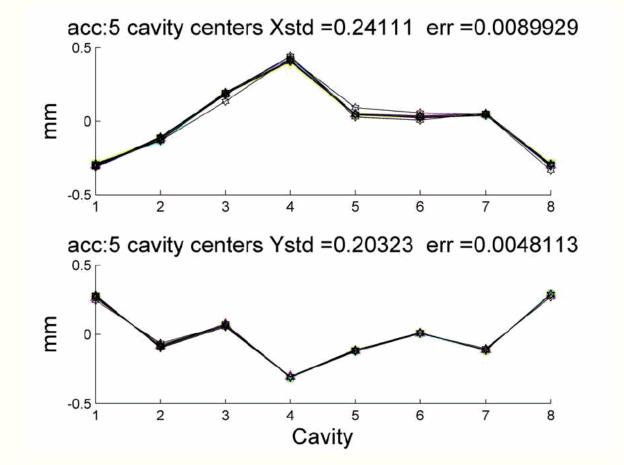


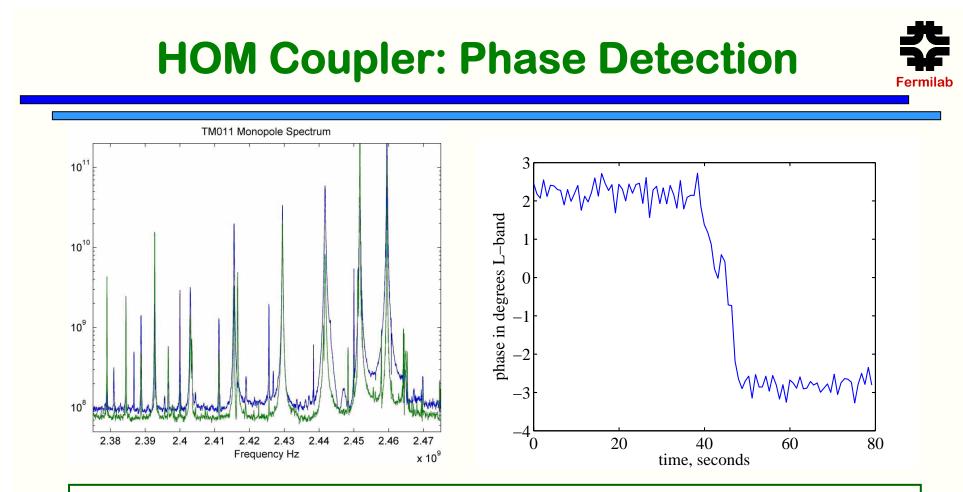
Example 2: HOM Coupler



HOM coupler signals can be used for (narrowband):

- Beam Position Monitoring
 - Dipole mode analysis of both polarizations.
 - Requires beam-based calibration data, to orthogonalize the polarization planes of the excited eigenmodes per SVD algorithm.
- Beam Phase Monitoring
 - Comparison of the leaking 1.3 GHz fundamental (TM₀₁₀) to the first monopole HOM (TM₀₁₁) on the same signal cable!
 - The method cannot resolve bunch-by-bunch phase information.




- HOM coupler waveforms of a dipole mode in time- and frequency domain.
- The polarization frequencies are not always well separated!
- The alignment of the polarization axes is due to cavity imperfections, coupler structures, etc. and may be even twisted.

HOM Coupler: BPM

- TTF results of ACC5 cavity alignment
- Narrowband read-out of the TE₁₁₁₋₆ mode
- Resolution:
 < 10 µm

Broadband HOM monopole measurements (TTF):

- Broadband, oscilloscope-based (2.5 GHz) data acquisition.
- 5 degree phase change set through the LLRF.
- Noise (~ 170 fs RMS) is equivalent to 0.08 degrees at 1.3 GHz.

Collaborations

- Fermilab has ongoing collaborations in ILC beam instrumentation R&D with KEK, DESY, SLAC and other laboratories.
- Beam Instrumentation R&D traditionally includes strong collaboration efforts among laboratories and universities! Almost all instrumentation activities at NML will be based on collaborations.
- Improvements in the beam instrumentation and diagnostics go hand-in-hand with beam quality and stability.
- High quality, stable beam conditions at NML will generate new ideas, and open collaborations in other areas.

Cost Estimation

NML Beam Instrument	M&S (k\$)	SWF (k\$)	Total (k\$) With Indirect
Toroids	70	243	394.4
BPM's	315	607.5	1162.4
TOF & Beam Phase (EOM-based)	120	270	491.4
Screen Monitors	125	472.5	752.9
HOM Signal Processing	70	270	428.4
BLM's	50	202.5	318.2
Read-out Electronics	180	337.5	652
Advanced Beam Monitors, e.g. EOS	400	472.5	1099.4
Tools (scope, software, RF equipment)	180		226.8
Grand Total	1510	2876	5525

Cost Estimation (cont.)

- Beam monitors and instrumentation costs can be staged:
 - Start with basic monitors, i.e. toroids, BPM's, screens
 - Continue with more advanced beam monitors...
- SCRF Instrumentation has to cover also other (non-NML) areas, e.g. test stands, HINS, protection systems, etc., some parts of the funds will be used therefore.
- Beam instrumentation always is under continuing development, more funds will be required in the long run!

Conclusions

- The beam instrumentation is used to test the performance of the SCRF accelerating structures, and related systems under realistic beam conditions.
- Precise, high resolution measurement methods will detect (also quantitatively) sources of imperfections, misalignments, errors, etc.
- A beam-based validation of the SCRF systems gives the final confidence and proof of quality and understanding of the entire project!

QUESTIONS