Cavity Processing Facility

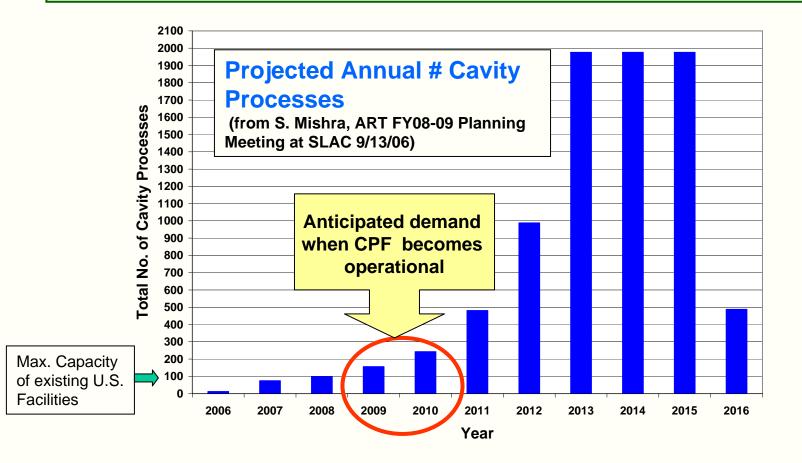
Harry Carter, Tug Arkan, Cristian Boffo, Dan Olis and Allan Rowe

Fermilab Technical and Accelerator Divisions

Outline

- Establishing the Need for this Facility
- Process Definition
- Cavity Processing Facility (CPF) Scope and Infrastructure Requirements
- CPF Cost Estimate
- CPF Schedule
- Conclusion

Goals for SRF Infrastructure: CPF


- To perfect U.S. fabrication & processing of SRF cavities and modules and to demonstrate performance with a full range of testing (including beam)
 Deploy ILC design / processing / assembly techniques
 Establish process controls to reliably achieve high gradient cavity
 Test cavities and module performance
 Test cavities and modules at the component level and in a systems test to demonstrate yield, reproducibility and beam performance
- To facilitate commercial production of SRF components and modules
 - Train and transfer SRF technology to the US industry
 - Allow industrial participation and input to the process
 - Similar to SC cable and magnet technology transfer
- To participate in SRF Research and Development
 - Develop expertise in SRF technology and provide training base for construction and operation of future accelerators
 - Our attempt to fit into the world's SRF community

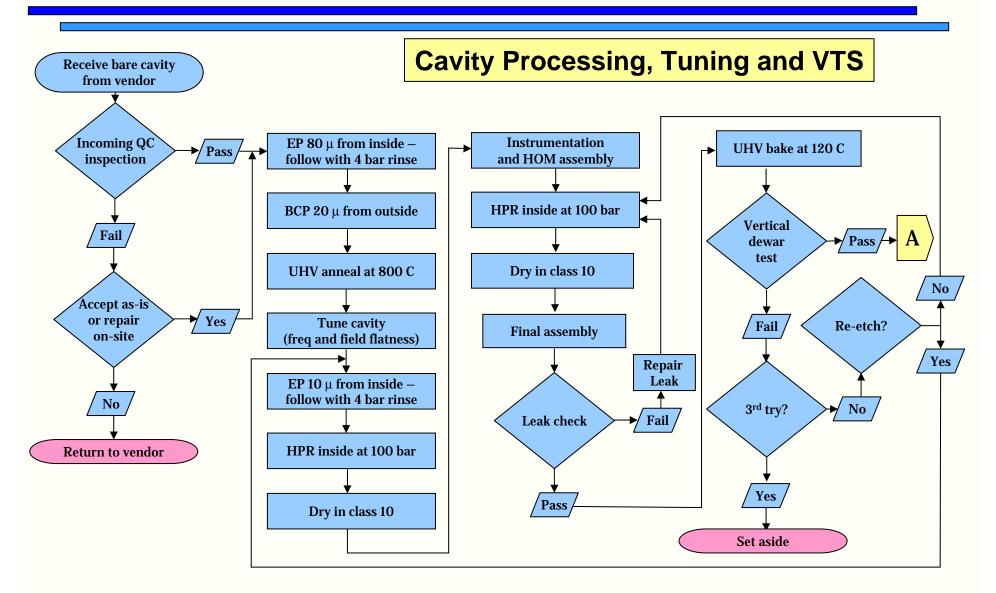
All of this work will be carried out with US/international collaboration

Establishing the Need for this Facility

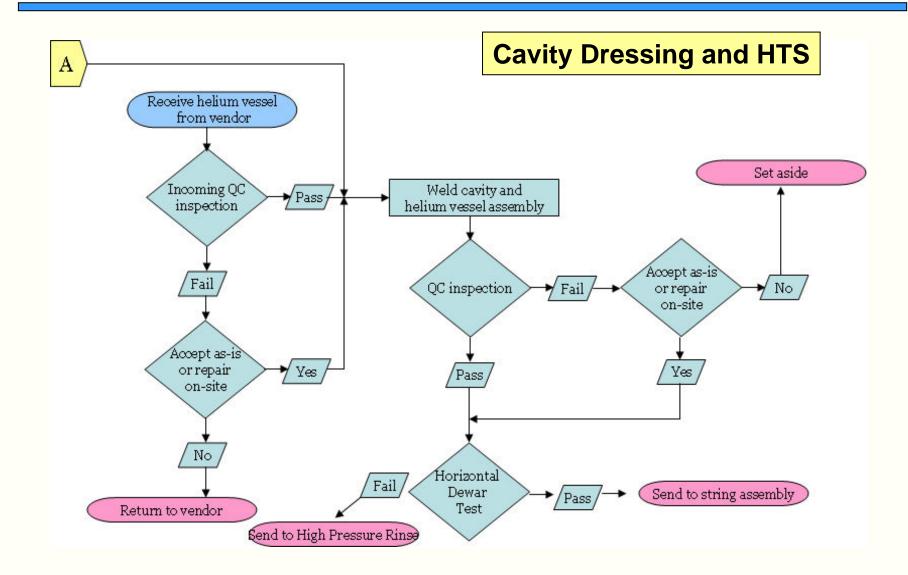
 Existing U.S. capability is insufficient to meet the anticipated demand---as demonstrated in Shekhar's talk

US Laboratories Capacity

Program	FY07	FY08	FY09	FY10	Capacity Needed/yr by FY10
Cavity Processing (EP, HPR, Bake)	Jlab-30 Cornell-10	Jlab-40 Cornell-10 ANL-40	Jlab-40 Cornell-10 ANL-40 Fermilab-20	Jlab-40 Cornell-10 ANL-40 Fermilab-100	200
Vertical Testing	Jlab-30 Cornell-10 Fermilab-20	Jlab-40 Cornell-10 Fermilab-75	Jlab-40 Cornell-10 Fermilab-75	Jlab-40 Cornell-10 Fermilab-200	200
Horizontal Testing	Fermilab-6	Fermilab-24	Fermilab-24	Fermilab-72	72
Cryomodule Assembly	Fermilab-1	Fermilab-4	Fermilab-12	Fermilab-12	12
Cryomodule Test	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML CMTS	12

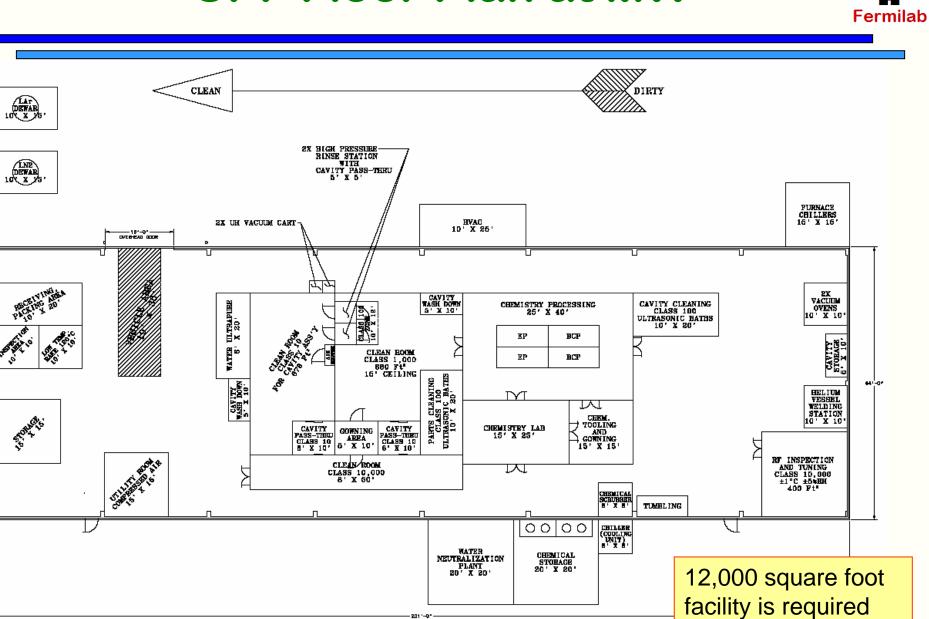

Process Definition

- The term "process" defines the complete procedure that transforms a fabricated cavity into a fully qualified cavity at a specified operating gradient and quality factor (in our case 35MV/m and 1.0e10). It includes the following operations:
 - Cavity processing
 - Cavity tuning
 - Vertical testing
- A flow chart delineating the procedure is presented on the next slide


Process Flow Chart

Cavity Flow Chart Subsequent to Completing the Process Flow Chart

CPF Functions


- Perform pre-EBW etching of cavity components
- Receive and store fabricated cavities
- Perform mechanical inspection of cavities
- Perform internal and external chemical processing
- Perform high pressure rinsing
- Perform high and low temperature cavity bakes
- Tune cavities for fundamental frequency and field flatness
- Prepare cavity for vertical test
- Receive vertically tested cavities
- Install helium vessels (dress cavities)
- Prepare dressed cavities for horizontal testing
- Receive cavities from HTS and send to string assembly facility (CAF)

Cavity Processing Facility Features

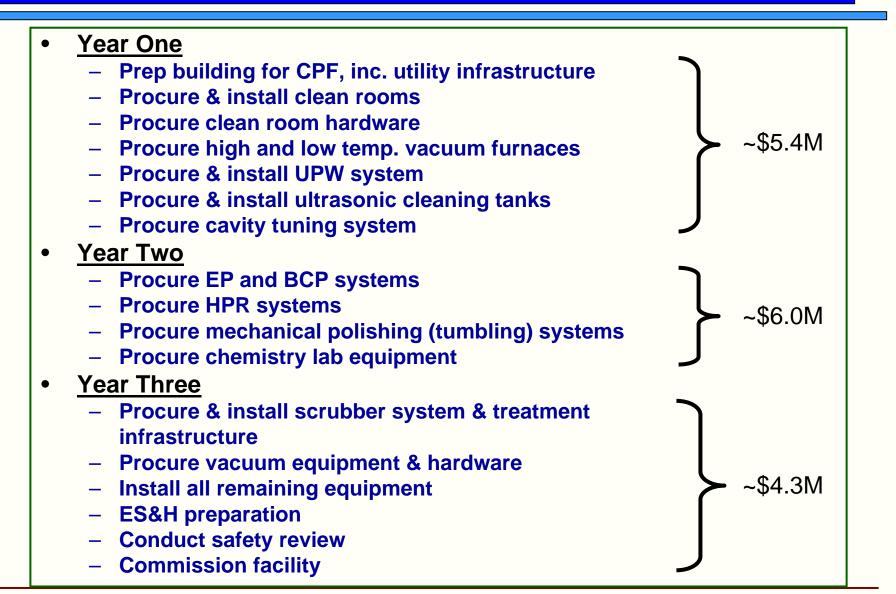
- Separate chemical storage building
- Chemistry laboratory for small samples and pre-EBW etching
- Wet station area for component cleaning prior to bringing into clean rooms
- Class 1000 clean room housing major chemical processing equipment (EP and BCP cabinets, etc.)
- Exhaust fume scrubber
- Acid neutralization system
- Ultra Pure Water (UPW) system
- High Pressure Rinse (HPR) stations
- High and low temperature furnaces
- RF inspection and Automated cavity tuning system
- Class 10 clean room for final prep of cavities prior to VTS
- High purity gaseous argon and nitrogen systems
- TIG welding station for helium vessel installation
- Ultra clean vacuum pumping system and leak checking systems

CPF Floor Plan at MW

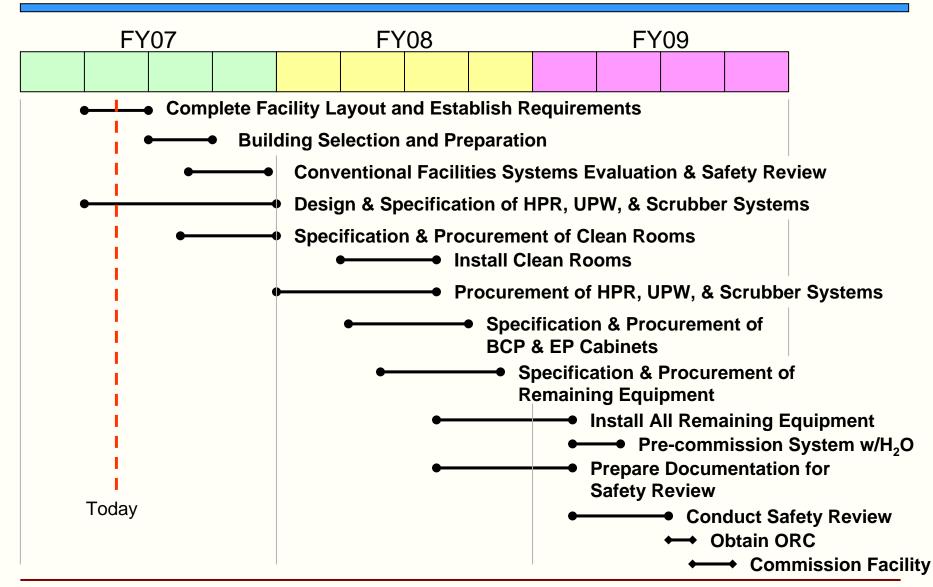
CPF Funding Requirements

Infrastructure		M&S	SWF	Total with Indirect	
Cavity Fabrication Infrastructure	\$	3,000	\$ 675	\$	4,380
Cavity Processing Facilities	\$	11,100	\$ 4,590	\$	18,945
Vertical Test Stand (VTS 2 & 3)	\$	2,625	\$ 1,845	\$	5,475
Horizontal Test Stand (HTS 2)	\$	1,220	\$ 1,057	\$	2,805
Cavity/Cryomodule Assembly Facilties (CAF_MP9 & ICB)	\$	690	\$ 270	\$	1,158
NML Facility (ILCTA_NML)	\$	18,270	\$ 23,220	\$	51,700
Cryogenics for Test Facilities	\$	10,690	\$ 950	\$	13,692
Cryomodule Test Stand	\$	5,400	\$ 2,970	\$	10,180
Material R&D	\$	870	\$ 722	\$	1,960
Illinois Accelerator Research Center	\$	20,000	\$ 4,050	\$	28,605
Grand Total (\$k)	\$	73,865	\$ 40,349	\$	138,900

Item \$K	 Assumptions
M&S: 11,100 SWF: 4,590 Grand Total w/o Indirect: 15,690	 Facility is located on FNAL site 3 year schedule from inception to completion and fully operational Funding profile assumes 1/3 TPC available each fiscal year
Grand Total with Indirect: 18,945	


CPF Itemized (Direct) Cost Estimate

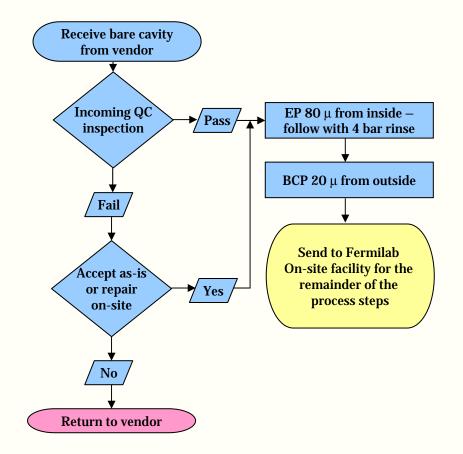
ltem	С	1&S Costs \$K	Labor FTE*yrs	 SWF \$K		al Cost \$K
Building Preparation	\$	250	0.5	\$ 68	\$	318
Building Utility Infrastructure	\$	250	2.5	\$ 338		588
Clean Rooms	\$	1,000	0.5	\$ 68	\$	1,068
Ultra-Pure Water System	\$	150	1.5	\$ 203	\$	353
Clean Room Hardware	\$	150	1.25	\$ 169	\$	319
Ultrasonic Cleaning Tanks	\$	150	0.5	\$ 68	\$	218
Vacuum Furnaces (2)	\$	1,000	0.25	\$ 34	\$	1,034
Lo temp.furnaces (2)	\$	200	1	\$ 135	\$	335
Cavity Tuning Devices and RF test equipment & fixtures	\$	1,000	1.25	\$ 169	\$	1,169
HPR Systems (3)	\$	1,200	1.25	\$ 169	\$	1,369
EP Systems (3)	\$	1,600	1.75	\$ 236	\$	1,836
BCP Systems (2)	\$	1,000	1.25	\$ 169	\$	1,169
Tumbling (2)	\$	500	1	\$ 135	\$	635
Chemistry Lab	\$	450	4	\$ 540	\$	990
Chemistry storage, preparation, treatment infrastructure	\$	1,000	1.25	\$ 169	\$	1,169
Vacuum Equipment and Hardware	\$	400	1.25	\$ 169	\$	569
TIG Welding Machines, fixtures	\$	150	0.75	\$ 101	\$	251
Miscellaneous Fixtures and Equipment	\$	400	4	\$ 540	\$	940
Monitoring, controls, HMI integration	\$	250	3.25	\$ 439	-	689
ES&H preparation			5	\$ 675	\$	675
Fotals	\$	11,100	34	\$ 4,590	\$	15,690


3 Year CPF Procurement Plan

CPF Schedule Timeline

Alternative: An Off-Site CPF

- A contract could be written for the design, construction, and operation of an off-site facility located very near FNAL.
- Facility would be financed by ILC funds and owned by government, but operated by industry
- Advantages:
 - Operation by an <u>experienced</u> electropolishing industrial firm using their manpower
 - Significantly reduces the need for large quantites of nasty chemicals on FNAL site
 - Initiates the industrialization program cavity processing
- Unknown total cost, estimate ~ \$6M due to the cost of a building (either leased or purchased)


Off-Site CPF Scope of Work

Perform initial cavity inspection
Perform bulk chemistry operations

Internal 80u EP
External 20u BCP

Possibly include HPR; otherwise, ship cavity to FNAL in container filled with UPW

Development of Industry

Cryomodule Process	Starts with	Transitions to					
Cavity Fabrication	Lab/Industry Collaboration	Industry					
Cavity Processing	Lab/Industry Collaboration	Industry					
Low Power Test (VTS)	Laboratory	Laboratory					
Cavity Dressing	Lab/Industry Collaboration	► Industry					
High Power Test (HTS)	Laboratory	 Laboratory 					
Cryomodule Fabrication	Lab/Industry Collaboration	Industry					
↓ Cryomodule Test (CTS)	Laboratory	Laboratory					
The technology for cavity fabrication & processing, cavity dressing and cryomodule fabrication will be transferred to Industry.							
Cryogenic testing of cavities and cryomodules along with beam tests will remain the responsibility of US laboratories.							

Conclusion

- The combined total process capacity of present U.S. cavity processing facilities has been shown to be inadequate to handle the anticipated near term demands.
- A concept for a new facility (CPF) capable of meeting the ILC pre-production demands has been presented. Development of the facility specification and design is underway at FNAL.
- If located on the Fermilab site, the CPF could be completed in ~2 years at a total cost of \$15.7M.
- Splitting the CPF along the lines of completing the bulk chemistry processing in an off-site facility may be advantageous and merits further investigation