Cryogenics for Test Facilities

Jay Theilacker

- To perfect U.S. fabrication & processing of SRF cavities and modules and to demonstrate performance with a full range of testing (including beam)
 - Deploy ILC design / processing / assembly techniques
 - Establish process controls to reliably achieve high gradient cavity operation and module performance
 - Test cavities and modules at the component level and in a systems test to demonstrate yield, reproducibility and beam performance
- To facilitate commercial production of SRF components and modules
 - Train and transfer SRF technology to the US industry
 - Allow industrial participation and input to the process
 - Similar to SC cable and magnet technology transfer
- To participate in SRF Research and Development
 - Develop expertise in SRF technology and provide training base for construction and operation of future accelerators
 - Our attempt to fit into the world's SRF community

All of this work will be carried out with US/international collaboration

US Laboratories Capacity

Program	FY07	FY08	FY09	FY10	Capacity Needed/yr by FY10
Cavity Processing (EP, HPR, Bake)	Jlab-30 Cornell-10	Jlab-40 Cornell-10 ANL-40	Jlab-40 Cornell-10 ANL-40 Fermilab-20	Jlab-40 Cornell-10 ANL-40 Fermilab-100	200
Vertical Testing	Jlab-30 Cornell-10 Fermilab-20	Jlab-40 Cornell-10 Fermilab-75	Jlab-40 Cornell-10 Fermilab-75	Jlab-40 Cornell-10 Fermilab-200	200
Horizontal Testing	Fermilab-6	Fermilab-24	Fermilab-24	Fermilab-72	72
Cryomodule Assembly	Fermilab-1	Fermilab-4	Fermilab-12	Fermilab-12	12
Cryomodule Test	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML CMTS	12

Outline

MDB Cryogenics

- Limited scope, low cost
- Built using mostly existing components (\$5M value)
- Not optimized

NM Cryogenics

- Dynamic scope
- Requires new cryogenic plant
- Warrants cost optimization

Fermilab Cryogenics Assets

- What cryogenic infrastructure is available past 2009?
- What does it take to make it usable for SCRF R&D?

MDB Cryogenics

.

NM Cryogenics

• LONG TERM SCOPE : PROVIDE RELIABLE CRYOGENIC SERVICE TO PHOTOINJECTOR (PI) WITH ILC RF UNIT OPERATING AT ILC PARAMETERS WITH A MINIMAL TOTAL (CAPITAL AND OPERATING) COST

• ILC CM operating parameters

<u>Beam</u>

 $E_{acc} = 31.5 \text{ MV/m}$ $Q = 1E^{10}$ Rep rate = 5 Hz

Cryogenics

 $T_{cavity} = 2.0 \text{ K}$ T _{shield} = 5 to 8 K T _{shield} = 40 to 80 K

• CHALLENGES OF THE LONG TERM SCOPE

- CAPACITY
- **RELIABILITY**
- OPERATING TEMPERATURES

- Multi phase approach is planned to fulfill the long term scope
- Cryogenic loads
 - 1st phase: PI and a single Type III plus CM
 - 2nd phase : PI and two Type III plus CM
 - 3rd phase : PI and RF Unit
- Cryogenic plants
 - 1st phase : Single TeV satellite refrigerator \$\$
 - 4 g/s LHe or 625 W @ 4.5 K, 80 K LN_2 for shields
 - 2nd phase : Two TeV satellite refrigerators \$
 - 8 g/s LHe or 1,250 W @ 4.5 K, 80 K LN_2 for shields
 - 3rd phase : New hybrid cryogenic plant \$\$\$
 - + 300 W @ 2 K, 300 W @ 5 to 8 K, 4 kW @ 40 to 80 K

• At the end of the 2nd phase

- Maximum RF Rep Rate

NM Phase	# of Tev Satellite refrigerators				
INIVI FIIdSe	1	2			
1 PI + Single ILC cryomodule	< 1 Hz	5 Hz			
2 PI + Two ILC cryomodules	n/a	5 Hz			
3 PI + Single RF Unit	n/a	< 2 Hz			

(based on ILC dynamic heat load model)

- Thermal shields won't match ILC specification
- 3rd phase requires a new refrigerator
 - A significant investment
 - Long lead item
 - We have examined surplus systems (SSC plant, etc.)
 - We have conducted industrial cost study
 - Requires overall SCRF scope definition

Required Funding

nfrastructure		M&S		SWF		Total with Indirect	
Cavity Fabrication Infrastructure		3,000	\$	675	\$	4,380	
Cavity Processing Facilities		11,100	\$	4,590	\$	18,945	
Vertical Test Stand (VTS 2 & 3)		2,625	\$	1,845	\$	5,475	
Horizontal Test Stand (HTS 2)		× 1,220	\$	1,057	\$	2,805	
Cavity/Cryomodule Assembly Facilties (CAF_MP9 & ICB)		690	\$	270	\$	1,158	
NML Facility (ILCTA_NML)		18,270	\$	23,220	\$	51,700	
Cryogenics for Test Facilities		10,690	\$	950	\$	13,692	
Cryomodule Test Stand		5,400	\$	2,970	\$	10,180	
Material R&D		870	\$	722	\$	1,960	
Illinois Accelerator Research Center		20,000	\$	4,050	\$	28,605	
Grand Total (\$k)		73,865	\$	40,349	\$	138,900	
Most infrastructure is in place \$2,7 24	397 M	A&S TE	-		-		

New Hybrid Cryogenic Plant

- An industrial budgetary study estimated for a 300 W at 2 K 300 W at 5-8 K 4,100 W at 40-80 K plant to be: **\$5.6M cold box and compressors \$1.2M** installation and startup \$3.9M distribution, controls and auxiliary
- Long lead item: ~24 month delivery

Fermilab cryogenics assets

- Fermilab has a significant amount of cryogenic assets, equipment and expertise, which with investment can be made usable for SCRF activities when Tevatron shuts off
- Most of the equipment, particularly Central Helium Liquefier (CHL), can not be used "AS IS" for SCRF activities
 - 4.5 K Helium liquefier
 - Requires 2K satellite for superfluid and shields production
 - Need to be automated to reduce operating cost
- Cryogenic asset value depends on SCRF test area location and a cost of conversion for SCRF specific cryogenic needs
- Work is being conducted to identify additional investment required to make use of Tevatron cryogenics for superfluid SCRF

CTF Refrigerators

- * Reciprocating expanders
- * Distributed control system
- * Pressure piping and cryogenic transfer lines.

- * Capacity (each):
 - 625 W @ 4.5 K or 4 g/s LHe
- * Located 500 m South from MDB

MDB Test areas

- *** Capture Cavity II from DESY**
- * Feed Box with modified J-T heat exchanger
- * Cryogenic instrumentation, controls, ODH system, etc

- * Horizontal test cryostat
- * Cryogenic interface similar to the Capture Cavity II

Cryogenic inventory

Helium purification

Purifier compressor:

Mycom helium screw compressor 30 g/s capacity

Full flow helium purifier 300 psig MAWP

He Vacuum pumps

- * Reworked for helium service Helium guarded dynamic seals Sub-atmospheric components
- * Variable speed drive
- * Upgraded controls

- * Kinney/TUTHILL
 - 2,100 KLRC Liquid ring 10,000 KMDB Roots Blower
- * JLab skids refurbished at FNAL
- * Capacity:

10 g/s He @ 12 torr

Distribution system

MDB bayonet can designed at SLAC and built at Fermilab

CTF Bayonet cans with LHe and LN₂ subcooler

Expansion box from muon bend beam line

Feb 13-14, 2007

Main helium compressors

- * Four oil-flooded screw compressors
- * Manufactured by Mycom
- * Capacity 60 g/s each
- * Pressure Discharge ~300 psig Suction ~ 1.2 psig
- * Power ~400 hp each

Fermilab

- * Vertical test cryostat for spoke resonators testing
- ***** Warm RF section solenoids
- * Spoke cryomodules with solenoids

