Low Level RF and Controls

Brian Chase - LLRF

Margaret Votava - Controls

Scope of LLRF Projects

- Vertical Test Stand
 - Cavity testing with automation analog LLRF (TD/Jlab)
- Horizontal Test Stands
 - Dressed cavity testing DESY/FNAL LLRF controller(Simcon)
 - Simcon is a 10 channel input VME controller developed for DESY
- High Intensity Neutrino Source HINS
 - 325 MHz, Fast Ferrite Vector Modulator -, LBNL/SNS//FNAL
- Coupler Conditioning Stand
 - 1.3 GHz and 3.9 GHz rack and stack -> Simcon
- NML Full RF Unit Test no beam
 - 3 Cryomodules with 24 cavities Simcon followed by FNAL design (MFC Module)
- NML Photo Injector Source beam to test string
 - Beam based calibration, beam loading, phase reference line -Simcon

Key LLRF R&D Issues

- ILC and HINS require the next generation RF Control System
 - Global 0.1% RMS beam energy regulation
 - Test worst case beam loading of buncher section at NML
 - Can we meet the regulation specs?
 - Multi-cavity regulation per klystron system (26 for ILC, 48 for HINS)
 - Will these schemes work with different cavity gradients?
 - Active Piezo-electric tuner feedback system
 - Can we control the cavity to 10 or 20 Hz?
 - Fast Ferrite Vector Modulator control HINS
 - Another tough regulation ?
 - Long Haul Phase Reference distribution
 - This looks like it might work on the bench, but can it work for the ILC?
 - Automation to fit the ILC machine scale
 - Self calibration
 - Self diagnostic
 - Global regulation with beam based feedback
 - The ILC will not operate without this automation
 - High reliability, modular, low heat load, and low cost
 - \$\$\$ for large machines

- Evolve the 10 channel DESY Simcon system
 - Higher Intermediate Frequency development
 - Fermilab is producing a next version Simcon card to improve noise and bandwidth performance
 - Status: close to production
- Develop a Multi-Channel Field Control Module (MFC)
 - 33 ADC channels, FPGA, DSP, 4 DAC channels
 - High density, low cost, low power and is based on VXI
 - Status: Front-end testing complete, close to production
- Develop the analog RF sections
 - 96 channel receivers
 - Transmitter
 - Master Oscillator
 - Phase Reference Distribution with pulsed reference line

Sources of Perturbations

. . .

o <u>Beam loading</u>	o Cavity dynamics
- Beam current fluctuations	- cavity filling
- Pulsed beam transients	- settling time of field
- Multipacting and field emission	
- Excitation of HOMs	o Cavity resonance frequency change
- Excitation of other passband modes	- thermal effects (power dependent)
- Wake fields	- Microphonics
	- Lorentz force detuning
o Cavity drive signal	
- HV- Pulse flatness	o <u>Other</u>
- HV PS ripple	- Response of feedback system
- Phase noise from master oscillator	- Interlock trips
- Timing signal jitter	- Thermal drifts (electronics, power
- Mismatch in power distribution	amplifiers, cables, power
	transmission system)

Feb 13-14, 2007

LLRF Rack Detail

Fermilab

3 Cryomodule Field Controller

. . .

٠

Fermilab

. .

•

. .

. .

High Power Amplitude/Phase Control for HINS

1300 MHz low noise DRO: 10MHz VCXO: Programmable frequency outputs

Cascaded Filters

1

0.5

n.

-0.5

Ō

500

3.99 L 1 500

1000

13MHz IF

600

700

1500

800

900

2000

1000

1100

2500

1200

700.

800

900.

1000.

1100

2.085

2.08

2.075

2.07

400.

Res= 1, Buf= 0

500.

Feb 13-14, 2007

600.

Piezo-electric Control of CC2

The Piezo-electric actuator counteracts the Lorentz force to maintain the cavity on resonance

Cavity field @ 25 MV/m

Piezo Drive -green Cavity Probe - Cyan Reflected Power - Magenta

Real Time Cavity Simulator

model is working.

Justin Keung, UPenn

- Weekly telecom for LLRF
 - FNAL, DESY, Warsaw ELHEP, KEK, ANL, LBNL, SNS, JLAB, INFN, and U of Penn
- Weekly telecom for ILC Controls
 - FNAL, ANL, SLAC, DESY, KEK
- Weekly telecom for ILC HLRF
- Collaborative projects-
 - Controller design for XFEL and ILCTA (DESY, FNAL)
 - Long Haul Phase Reference Line (ANL, FNAL...)
 - HINS LLRF (LBNL, SNS, FNAL)
 - Master Oscillator (DESY, FNAL)
 - Real time Cavity Simulator (U of Penn, DESY, FNAL)
 - Piezo-electric resonance control (INFN, JLAB, FNAL)
 - Data Management (FNAL, ANL)

- LLRF and Controls may be staged along with other key components
 - BUT...nothing will operate without some version of these systems.
- R&D is manpower intensive
- R&D requires sustained long term effort to meet design goals and to be cost effective
- Growing expertise and training new people in in these systems is critical to the success of any future large SCRF project

- New technologies from the telecom industry(ADC,FPGA, etc) allow for the development of the next generation LLRF systems
 - These next generation designs will be very flexible and will apply to light sources and other new machines
- We need these systems to achieve the stated goals of SCRF R&D here at Fermilab
 - The performance of these systems directly affect the performance of the accelerator as a whole.
- Now is the right time to do this development
 - The proposed R&D is key for large scale accelerator projects
- LLRF is on track to support the ILCTA program given the present budget profile

SCRF Control Scope

- Controls R&D is focused in two areas
 - 1) R&D to create stable and robust controls system for SCRF R&D program
 - 2) R&D for ILC Controls
- This request addresses only the SCRF R&D
 program
- Want to make ourselves available for ILC Controls R&D
 - Control system is recognized critical for ILC success
 - NML is strong site for controls R&D
 - Running with ILC beam parameters (ish)
 - Conveniently located near institutions involved in global controls effort (ANL, FNAL)
 - Close collaborators with others (DESY, SLAC).
 - Not much GDE funding in near term, but will come.

- 1. Provide an operationally stable system for the automatic procedures needed for cavity and cryomodule testing
- 2. Provide a consistent controls infrastructure for all the facilities: VTS, HTS, NML.
 - VTS controls in the SNS package. Interface to common electronic logbook/data management systems.
- 3. Provide an infrastructure that can readily integrate components developed at collaborating institutions
- 4. Provide a work area conducive ILC Controls R&D

These goals are not always compatible.

- Balance needs to be found

SCRF Focus

- Infrastructure support
 - Core controls system(s) support, development, and configuration management including code packaging and distribution
 - Controls systems include EPICS, DOOCS and diagnostic systems such as LabView and MatLab
 - Develop cavity data management system
 - Additional component support including system management, electronic logbook, cavity data management system
- Test area specific
 - NML specific development
 - Develop timing and clock system that are required for first beam operation
 - Develop interfaces for new components for instrumentation and control
 - Develop controls interface for ATCA BPMs
 - Develop/configure NML application software
 - HTS/VTS ongoing support updating processes, and user interfaces as more experience with the cavities is gleaned.

NML Beam Instrumentation

Fermilab

NML Controls Overview

- Labor ~12 FTE annually
 - Infrastructure support
 - NML specific support
 - HTS/VTS support
 - Cavity Data Management Development (1 year only)
- M&S: ~ \$950K
 - Gigabit network infrastructure
 - RF interlocks
 - Event clock/timing system
 - Data acquisition and control (IOCs)
 - Local consoles, archiving, logbook..
 - Control room outfitting
- Detailed costing available in spreadsheet

ILC Controls R&D

- High Availability
 - Evaluating ATCA as a standard outside of instrumentation
 - Diagnostic Interface Layer
 - Evaluation of high availability software techniques in all layers
 - Standards, standardization, quality assurance
- Timing/feedback
 - Precision timing and RF phase distribution
 - Extensive reliance on automation and beam based feedback
- Controls system studies
 - Conflict Avoidance
 - Fault detection and recovery
- Scalability
 - R&D needed to configure/control/monitor a control system as complex as the ILC.
- Remote operations
 - Provide a framework which is supportive of remote operations R&D such as role based access.