Industrial Participation & SRF Infrastructure at Fermilab

Phil Pfund with input from Harry Carter, Rich Stanek, Mike Foley, Dan Olis, and others

Outline

- Goals for SRF infrastructure
- Why industrial participation?
- Industry interest
- Examples of current participation (not including construction related industries)
- On-going industrial cost study
- Review charge question #5: "Does the SCRF plan for FY08 and beyond make use of and develop U.S. industry at an appropriate level?"
- Next steps

Goals for SRF Infrastructure

- To perfect U.S. fabrication & processing of SRF cavities and modules and to demonstrate performance with a full range of testing (including beam)
 - Deploy ILC design / processing / assembly techniques
 - Establish process controls to reliably achieve high gradient cavity operation and module performance
 - Test cavities and modules at the component level and in a systems test to demonstrate yield, reproducibility and beam performance
- To facilitate commercial production of SRF components and modules
 - Train and transfer SRF technology to the US industry
 - Allow industrial participation and input to the process
 - Similar to SC cable and magnet technology transfer
- To participate in SRF Research and Development
 - Develop expertise in SRF technology and provide training base for construction and operation of future accelerators
 - Our attempt to fit into the world's SRF community

All of this work will be carried out with US/international collaboration

Why Industrial Participation?

- It is expected that U.S. industry must play a large role in the production of mass produced cavities and cryomodules.
- Limited experience currently exists in U.S. industry, particularly for cavity fabrication and processing.
- U.S. industry has expertise in reducing mass production costs, particularly if engaged early in the development cycle.
- Fermilab initiated the formation of a network of industrial companies to stimulate interest and participation in the ILC.

Linear Collider Forum of America

- (from LCFOA mission statement) "LCFOA provides a formal network for its U.S. industry members with a common business interest to interact with U.S. government funded R&D efforts during the design and siting of the ILC."
- The LCFOA was formed in September 2005 and has met three times (~twice per year). The fourth meeting is planned for February 28, 2007 in Washington, D.C.
- The LCFOA lists 26 members, six of whom contributed to the RF Unit cost study.

Current Contracts & Discussions

- CPI: Producing six 3.9 GHz couplers. Ordered twelve 1.3 GHz couplers based on DESY drawings and specifications. Fabrication scheduled to immediately follow the DESY TTF order.
- AES: Contract to fabricate four 9-cell 1.3 GHz TESLA design cavities. Order placed for six 9-cell GHz cavities with equal end group lengths. (Order for eight cavities of this type placed with ACCEL.) Plan to order 24 additional cavities in FY07.
- Niowave: Contract to design HPR system, including fabrication specifications and drawings.
- Roark & Niowave: Three phase contract to produce 1-cell 3.9 GHz, 1-cell 1.3 GHz and 9-cell 1.3 GHz cavities. Has subcontract with Niowave to do pre-weld chemistry.
- ABLE Electropolish: Chicago area company. Met with Fermilab a couple of times and visited JLab. Proposing to send a person to JLab for six months.

RF Unit Cost Study

- Three cryomodules, eight cavities in each, with a magnet package in one cryomodule.
- Also includes: Klystron, Modulator, RF distribution, RF power couplers and Low Level RF.

Fermilab

.

RF Unit Cost Study

- Contracted with AES (and team members Meyer and CPI) for an industrial cost study of an RF Unit.
- Kick-off on July 26, 2006. Work was completed final report (for comment) issued on January 26, 2007.
- Identified potential for cost reductions of up to 25% in cavity fabrication and 35% in power coupler fabrication.
- Identified other areas to pursue for cost reductions.

 Does the SCRF plan for FY08 and beyond make use of and develop U.S. industry at an appropriate level? Fermilab

Development of Industry

Cryomodule Process	Starts with	Transitions to
Cavity Fabrication	Lab/Industry Collaboration —	→ Industry
¥		
Cavity Processing	Lab/Industry Collaboration —	→ Industry
¥		
Low Power Test (VTS)	Laboratory —	→ Laboratory
_		
Cavity Dressing	Lab/Industry Collaboration —	→ Industry
¥		
High Power Test (HTS)	Laboratory —	Laboratory
¥		
Cryomodule Fabrication	Lab/Industry Collaboration —	→ Industry
¥		
Cryomodule Test (CTS)	Laboratory —	→ Laboratory

- The technology for cavity fabrication, cavity processing, cavity dressing and cryomodule fabrication will be transferred to industry.
- Cryogenic testing of cavities and cryomodules along with beam tests will remain the responsibility of US laboratories.

Fermilab

Required Funding

Infrastructure		M&S		SWF		Total with Indirect	
Cavity Fabrication Infrastructure	\$	3,000	\$	675	\$	4,380	
Cavity Processing Facilities	\$	11,100	\$	4,590	\$	18,945	
Vertical Test Stand (VTS 2 & 3)	\$	2,625	\$	1,845	\$	5,475	
Horizontal Test Stand (HTS 2)	\$	1,220	\$	1,057	\$	2,805	
Cavity/Cryomodule Assembly Facilties (CAF_MP9 & ICB)	\$	690	\$	270	\$	1,158	
NML Facility (ILCTA_NML)	\$	18,270	\$	23,220	\$	51,700	
Cryogenics for Test Facilities	\$	10,690	\$	950	\$	13,692	
Cryomodule Test Stand	\$	5,400	\$	2,970	\$	10,180	
Material R&D	\$	870	\$	722	\$	1,960	
Illinois Accelerator Research Center	\$	20,000	\$	4,050	\$	28,605	
Grand Total (\$k)	\$	73,865	\$	40,349	\$	138,900	

• \$5.5M is budgeted for industrialization both in the FY08 and FY09 ILC program requests. It is not included in the infrastructure request above.

Fermilab

- Close out AES RF Unit cost study contract and analyze the information.
- Use cost study information to target drivers for cost reductions (i.e. DFM / value engineering, etc.)
- Early emerging targets: cavities and end group parts, power couplers, helium vessels, vacuum vessels, magnet package, cryomodule assembly....
- Plannning for \$5.5M in FY08 and in FY09 for industrialization as part of the ILC program.
- Establish contracts with various companies to: assist in DFM, reduce fabrication costs, transfer technology, develop experience, qualify as vendors,
- We have not yet determined explicit work scopes.

Candidate Industrial Participation

- Design improvements in cavity end parts. Fewer, simpler parts.
- Develop high volume machining vendors for niobium parts.
- Stainless steel helium vessel.
- Design improvements in power couplers.
- Magnet package design.
- Vacuum vessel. Tooling and/or design changes/tolerance reductions to eliminate or minimize post weld machining of flanges.
- Cryomodule assembly.
- HOM housing. Cost reduction improvements in fabrication.
- Cavity and cryomodule factory layouts.
- Develop commercial electropolishing expertise.

Conclusions

- There is no debate U.S. industry needs to be involved in our pursuit of the ILC.
- Industry needs to be involved early to have the greatest impact on our designs.
- We need to develop industrial sources of competition for the components and systems we will purchase – now to support development, and in the future to support construction of the ILC.