Beam Test Facility at NML and Cryomodule Test Stand

Sergei Nagaitsev Fermilab

February 13, 2007

•

Infrastructure	M&S		SWF		Total with Indirect	
Cavity Fabrication Infrastructure	\$ 3,000	\$	675	\$	4,380	
Cavity Processing Facilities	\$ 11,100	\$	4,590	\$	18,945	
Vertical Test Stand (VTS 2 & 3)	\$ 2,625	\$	1,845	\$	5,475	
Horizontal Test Stand (HTS 2)	\$ 1,220	\$	1,057	\$	2,805	
Cavity/Cryomodule Assembly Facilties (CAF_MP9 & ICB)	\$ 690	\$	270	\$	1,158	
NML Facility (ILCTA_NML)	\$ 18,270	\$	23,220	•	51,700	
Cryogenics for Test Facilities	\$ 10,690	\$	950	\$	13,692	
Cryomodule Test Stand	\$ 5,400	\$	2,970	*	10,180	
Material R&D	\$ 870	\$	722	\$	1,960	
Illinois Accelerator Research Institute	\$ 20,000	\$	4,050	\$	28,605	
Grand Total	\$ 73,865	\$	40,349	\$	138,900	

. .

- To perfect U.S. fabrication & processing of SRF cavities and modules and to demonstrate performance with a full range of testing (including beam)
 - Deploy ILC design / processing / assembly techniques
 - Establish process controls to reliably achieve high gradient cavity operation and module performance
 - Test cavities and modules at the component level and in a systems test to demonstrate yield, reproducibility and beam performance
- To facilitate commercial production of SRF components and modules
 - Train and transfer SRF technology to the US industry
 - Allow industrial participation and input to the process
 - Similar to SC cable and magnet technology transfer
- To participate in SRF Research and Development
 - Develop expertise in SRF technology and provide training base for construction and operation of future accelerators
 - Our attempt to fit into the world's SRF community

All of this work will be carried out with US/international collaboration

Our overall strategic goal: bring the ILC to the Fermilab site

- Need to create state-of-the-art SCRF technology base at Fermilab
 - Tight-loop cryomodule manufacturing and testing process
- Need to train personnel to be experts in linac construction, commissioning and operation
 - This can only be accomplished by "building" a large enough facility to create a critical mass of people on site
- Focus on international collaborations to conduct critical R&D and tests.
- Need to educate students who will be building and operating the ILC in the future.

How does our plan address these goals ?

- The facility we are proposing will be the primary facility in the world to build and test new ILC CM's for the near future.
- Several important changes to the Tesla CM design are being planned for the ILC CM. These include a higher gradient, relocation of the quad, shortening of the cavity end-group, and a new tuner design. Also under discussion are different modulators, klystrons, cavity shapes, and other things.
 - Need to test all critical components in realistic operating conditions, prior to design freeze. The "realistic conditions" to include the following four: rf power, mechanical, thermal cycles, and radiation.

 ILC S2 task force (string test) recommends: the minimum size system test needed to confirm the performance of a new design is a single RF unit with ILC like beam.

- ILC RF unit is 3 CMs powered by a 10 MW MBK

 Many tests are statistical in nature, a longer string test with several RF units would be better.

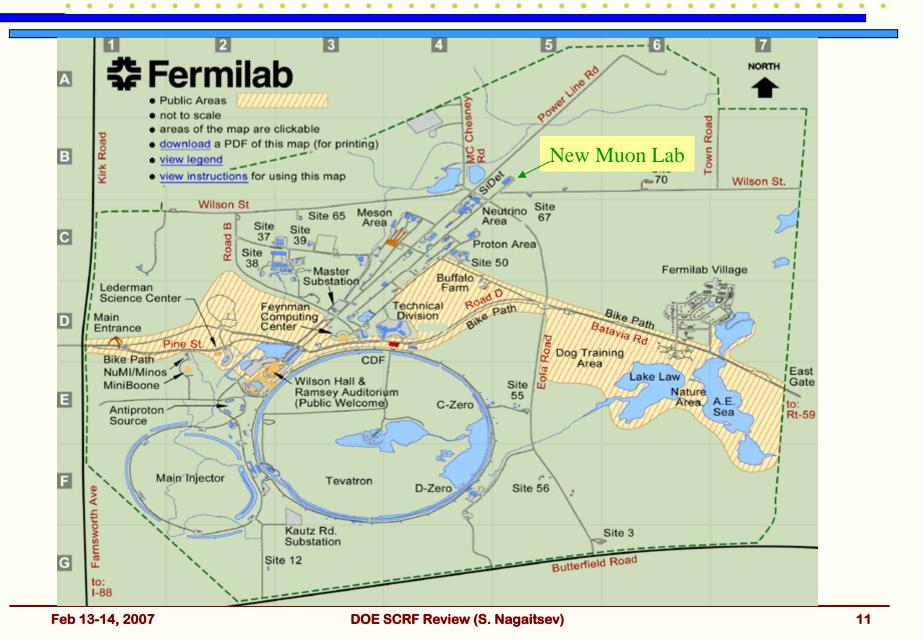
- Cryomodule gradient calibration with beam energy spectrometer; there could easily be a 10% uncertainty in rf calibrations.
 - Need energy spectrometer upstream and downstream of CMs.
- Many tests can be done at the Horizontal Test Stand. What is missing:
 - Beam loading effects;
 - HOM excitations;
 - Cavity alignment;
 - Check static and dynamic heat loads
- Allows to train Fermilab personnel by "doing" it.
 - Needs to be intellectually stimulating
 - Exercises all support departments: controls, instrumentation, utilities, cryo, EE, RF, safety, operations, mechanical

Total Cost - NML Test Facility

Expenditure Description	M&S		sw	F	al Including irect
· · ·					
NML Conventional Facilities	\$	720.00	\$	445.50	\$ 1,422.32
NML Cryogenic System	\$	2,400.00	\$	3,334.50	\$ 7,163.53
NML RF Power System	\$	2,900.00	\$	1,849.50	\$ 5,800.98
NML Auxillary Systems	\$	530.00	\$	472.50	\$ 1,236.33
NML Operations	\$	400.00	\$	1,080.00	\$ 1,880.58
NML LLRF	\$	710.00	\$	3,294.00	\$ 5,141.63
NML Controls	\$	940.00	\$	4,711.50	\$ 7,266.22
NML Instrumentation	\$	1,510.00	\$	2,875.50	\$ 5,525.48
NML Injector/Laser	\$	1,230.00	\$	1,323.00	\$ 3,165.82
NML Accelerator	\$	250.00	\$	796.50	\$ 1,334.51
NML Test Beamlines	\$	990.00	\$	999.00	\$ 2,461.84
NML Support Equipment/Systems	\$	2,340.00	\$	1,431.00	\$ 4,600.42
NML Building Extension	\$	3,350.00	\$	607.50	\$ 4,698.45
Total NML Infrastructure	\$	18,270.00	\$	23,220.00	\$ 51,698.11

- Includes FY07 FY09
- Assumes FY07 M&S funding of ~ \$4M
- Cost given in FY07 dollars
- Does not include escalation or contingency

- Cryogenics (J. Theilacker's talk): \$7.2M The temporary 1.8K system is needed to start the program. A new cryo plant is needed by FY09.
- RF power (M. Champion's talk): \$5.8M Not included in our request is the SLAC contribution, which is essential for making the system test.
- LLRF and controls (B. Chase' talk): \$12.4M -- Very laborintensive. Switching to a new controls system.
- Instrumentation (M. Wendt's talk): \$5.5M -- Substantial development effort required.
- Injector and test beam lines: \$6.9M Much already exists at A0, but a lot more is needed.
- Building extension (\$4.7M) is needed to fit the system test.
- Support systems (\$4.6M): safety, alignment, vacuum, cable pulls etc.



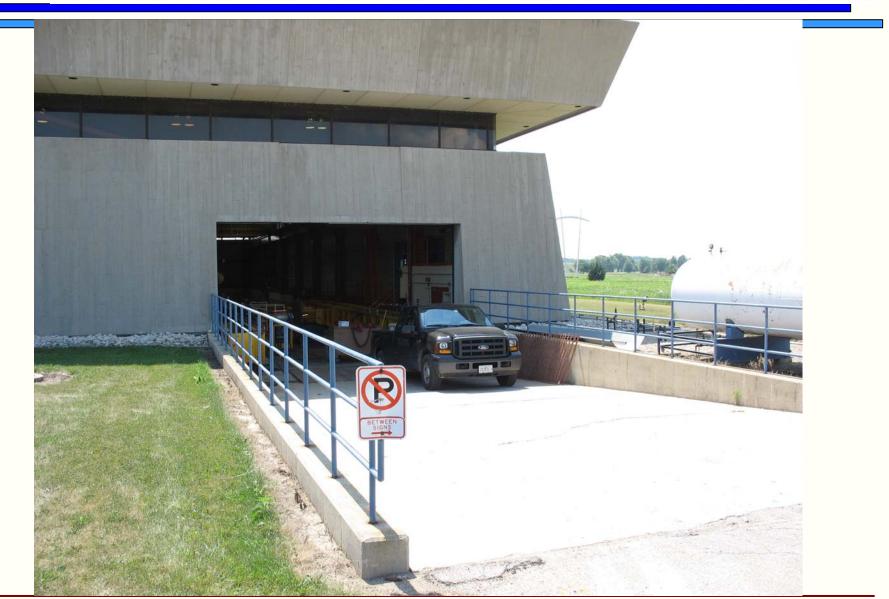
- NML is a facility to be located in the existing building at Fermilab (New Muon Lab)
 - The New Muon Lab building is not large enough to accommodate 3 cryomodules and need to be extended by FY09
- New Muon Lab building is part of Fermilab's ILC Test Areas (ILCTA_NM)
 - Other areas are: MDB (horizontal SCRF cavity test stand), IB1 (vertical test stand) etc.
- The first NML users will be the ILC program.
 - The cryomodule tests are also essential to HINS (β =1)
 - The Accelerator R&D (AARD) portion will first piggyback on these programs; its share will increase with time

Location

New Muon Lab building

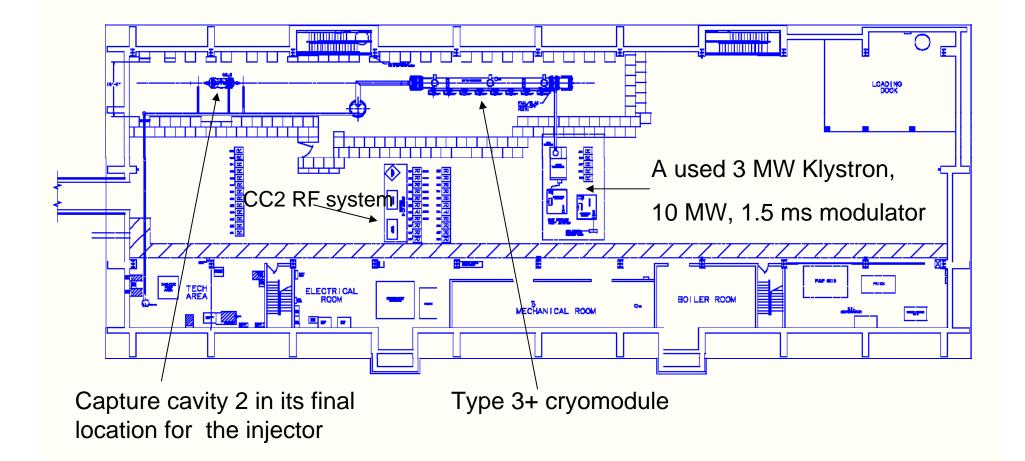
•

NML inside (now)



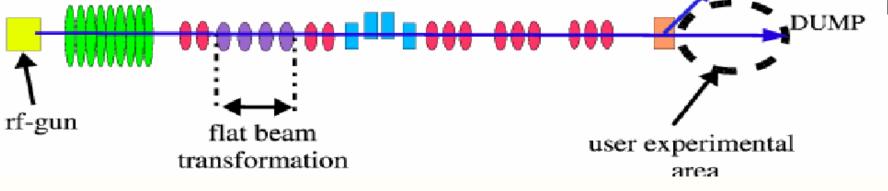
٠

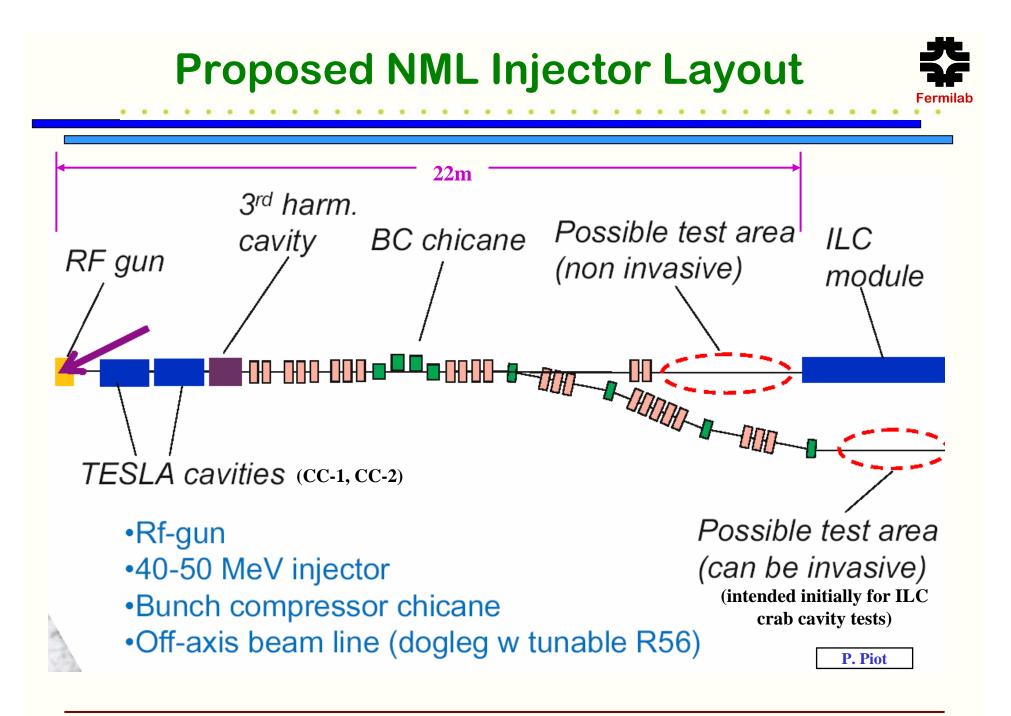
NML: north side



Outline of our plans

- Cryomodule delivery
 - 1st (Type 3+) cryomodule is planned to be delivered in fall, 2007
 - 2nd (Type 3+) CM summer 2008
 - 3rd (ILC Type 4) CM Mid FY09
 - Replace all three CMs with ILC Type 4+ in FY2010
- The NML facility will start as a Cryomodule Test Stand in FY07-08
- FY08: add beam; start civil construction of the building extension
- Convert to an ILC RF Unit beam test facility in FY10
- Construct a separate Cryomodule Test Stand (no beam) in FY10. Location TBD.





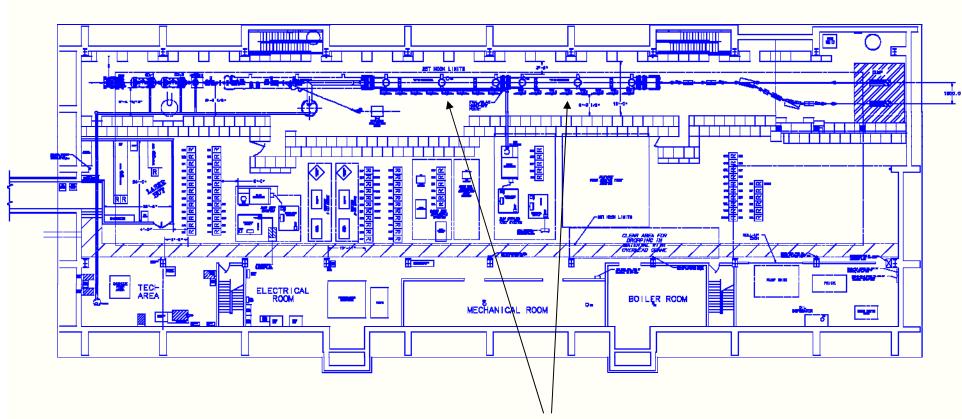
- 3.2 nC/bunch @3 MHz, up to 3000 bunches @ 5Hz
- Bunch length: 300-µm rms
- Transverse emittance: not important (~5 μm)
- Energy: 30-40 MeV (to avoid overfocusing in the CM operating at 31 MV/m)
- Need "known and frozen" beam parameters at the cryomodule entrance
- The AARD program requires more flexibility, mostly in terms of peak current.

Current Photoinjector Layout at A0 Fermilab **13m** TESLA cavity (CC-1) magnetic bunch compressor DUMP 12 MV/m

Feb 13-14, 2007

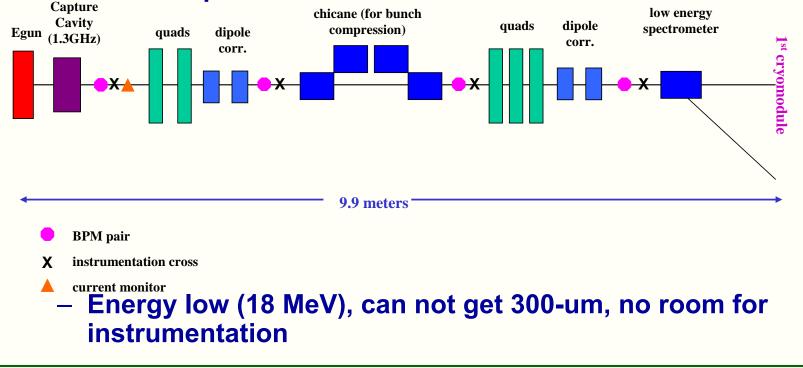
Photoinjector Upgrades for NML

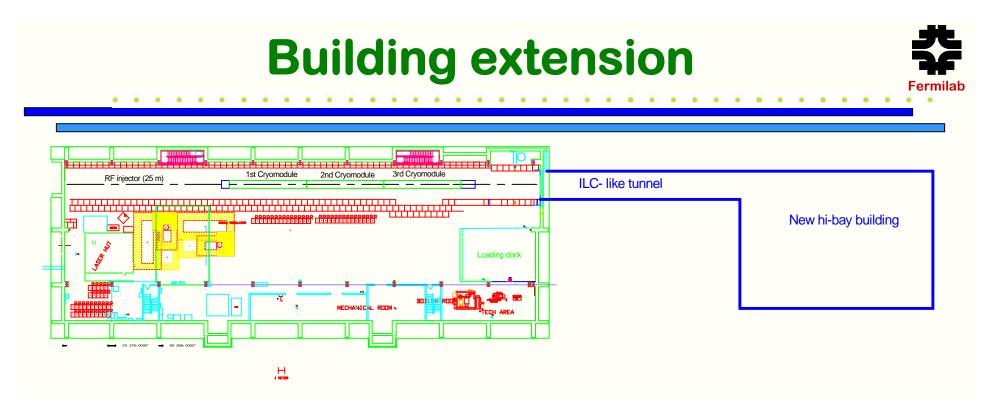
- Laser no additional major upgrades for NML
- Egun entirely new similar to DESY(PITZ) egun design; capable of ILC beam parameters
- Egun modulator upgrade: 1 Hz → 5 Hz; 300 msec → 1 msec
- Beamline higher energy → decreased space-charge
- 3rd harmonic cavity shorter bunch length; higher peak current
- Instrumentation upgrade
- Off-axis beamline addition of a 4-dipole dogleg will provide an off-axis beamline for testing ILC crab cavities, emittance exchange experiment, and other tests
- Better integrated controls system



- High-energy beamline elements (downstream of CMs)
- A beam dump (50 kW at final stage)
- A spectrometer magnet(s)
- Cryomodule instrumentation (and other devices)
- New beam instrumentation
- Machine protection system

Two CMs with beam




The existing building is perfect for testing two cryomodules with ILC-like beam. The building can be extended to fit 3 cryomodules.

- With 3 CMs, the space available for the injector is ≤ 10 m.
 - Possible, but injector is compromised;
 - Many ILC studies impossible;
 - AARD impossible.

- Construct a new building ~50m away from NML. Connect by a tunnel when schedule allows. Move loading dock.
- ILC-like tunnel, space for 3 more cryomodules
- Room for a new cryoplant (see Jay's talk)

• Temporary cryo system (being installed now):

		# of Tev Satellite refrigerators			
	NML Stage	1	2		
1	PI + Single ILC Cryomodule	1 Hz	5 Hz		
2	PI + Two ILC Cryomodules	n/a	5 Hz		
3	PI + Single ILC RF Unit	n/a	< 2 Hz		

New Cryo plant

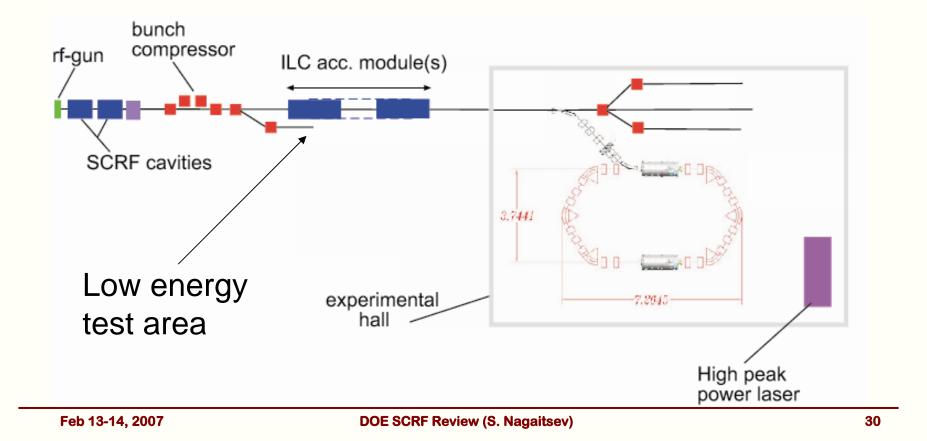
- Must be flexible to allow a wide range of heat loads, including 5-Hz operation
- Must meet specifics of the ILC operating temperature levels of 2.0 K, 5 K, and 40-80 K
- Long lead time
- Requires a 15m x 25m building; the plan is to combine it with the NML extension.
- Engineering studies complete, have a quotation.
 - See Jay's talk

ILC plans at NML

- 1. Demonstrate stable long-term high-gradient beam operation at ILC-like bunch parameters.
- 2. While operating at high gradient and ILC-like beam currents, demonstrate a LLRF controls system such that the beam energy and beam phase stability meet the ILC specs.
- 3. Evaluate effects of cavity gradient spreads, dark current, cryogenic load, radiation levels with beam operation.
- 4. Measure beam kicks due to couplers, cavity tilt, quad rotations + tilt errors characterize focusing properties of SCRF cavities.
- 5. Measure vibrations of cavities and quads.
- 6. Test beam diagnostics.
- 7. Test ILC crab cavities.
- 8. Test the ILC installation procedure and tunnel layout.
- 9. May evolve into a near-final system integration test.

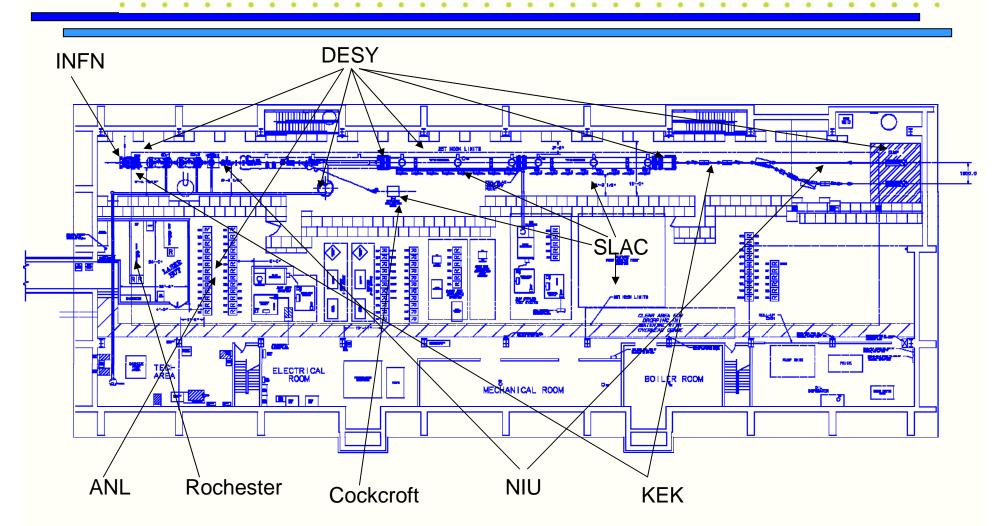
A facility to test ILC baseline and alternative designs

- Many groups in the US and world-wide are looking for a place to test their ILC-related designs.
 - Need beam at 200-800 MeV, need space to set up tests
- Baseline design:
 - "Keep alive" positron source (ANL)
 - SC undulator (Cornell)
 - Crab-cavity (SLAC, Cockcroft Inst)
- Alternative designs:
 - New HOM coupler design (MIT)



- The existence of the NML facility provides the opportunity to conduct an AARD program
 - Had a workshop in Nov 2006
- Fermilab wants to establish an AARD program at NML.
 - In this proposal, we are not asking to fund the AARD program at NML.
- Flexible beam injector needed to support various beam parameters (emittance, bunch charge, bunch length)
- Unique beam parameters anticipated:
 - Record high peak current of 14kA possible
 - ~30 um beam spot size (FWHM)
 - Beam energy up to 800 MeV
 - Structure: 3000 bunches or a witness bunch 300 um behind

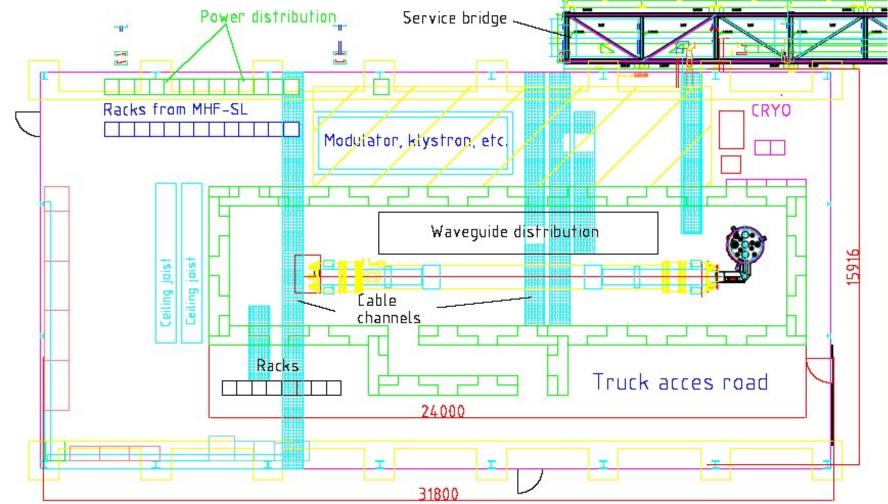
AARD plans



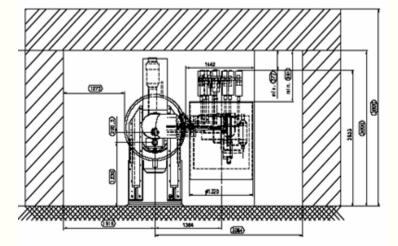
- Number of AARD experiments possible in NML itself:
 - <u>one</u> at low energy (50MeV), <u>one-two</u> at full energy (space!)
- Building extension needed to provide area for 4-7 more

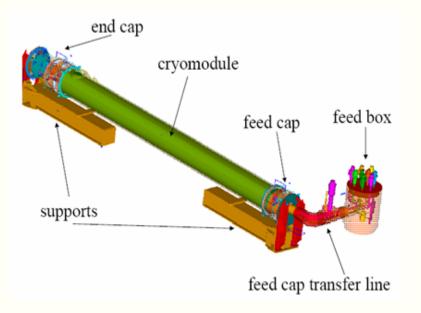
Collaborations

- SLAC: RF power dist system, 10 MW Klystron; crab cavities;
- DESY: too many topics to list;
- KEK: rf gun, diagnostics;
- ANL: controls, AARD;
- INFN: photo cathode;
- Rochester: laser;
- NIU: AARD, injector;
- Cockcroft Inst.: crab cavities



- We know we will need it eventually. ... Need by FY2010-11
- Location yet undetermined
- A 500 sq meters, 32m x 16m, building required. Includes some utility and access space
- Much larger than a typical Fermilab magnet test stand due to the shielding cave
- Comparable in scope to Stage-1 of NML
- Motivations for cryomodule tests
 - Mechanical checks
 - Alignment of tubes, flanges, etc.
 - Leak checks of all volumes
 - Conditioning of main RF-couplers
 - Cryo load measurement, Q and Eacc
 - SC magnet power test
 - Dark current measurements





Module Test Stand (Lutz Lilje, DESY)

- Allows cryogenic tests and RF measurements independent from the LINAC
 - No beam tests
 - Dark current measurements

- Fermilab plans to create the NML facility to test the ILC RF unit (3 CMs) with beam at ILC-like parameters by FY10.
 - Planning and engineering designs underway
 - Building extension and new cryo plant are needed to meet demands of users (ILC, AARD).
- Plans to use the NML for accelerator research and training; develop partnerships with NIU and other local universities. Collaborations with SLAC, KEK, DESY and ANL.
 - Building extension required to make it a users facility with competitive and flexible beam parameters.
- Plan to construct a new Cryomodule Test Stand by FY10-11.