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Outline

 Why good tracker resolution?
« Contributions to resolution
 MC generation

« Mathematical technique (scattering / initial beam
spread)

 Results
— Error matrices
— Resolutions at Ecal front face & collimator

* Run-by run effects
* Multiple electron events
* Summary
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Why good tracker resolution?
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Want to compare reconstructed Ecal entry
point with true entry point from
reconstructed track

Previous MC studies show Ecal position
resolution to be ~3-4mm

Require reconstructed track resolution at
Ecal front face to be at least as good as
Ecal position resolution in order to

accurately measure the Ecal resolution in
data

© Imperial College London



Resolution Contributions

* Intrinsic DC Resolution

— CALICE analysis & software phone meeting
(20/12/06); P. Dauncey gave a value of =0.5mm

« Small-angle scattering through =10m of
air/scintillator

* Angular/positional spread of beam at
collimator

» Factors relevant to data analysis:
— Run-by-run shifts in beam position
— Drift velocity; =30 microns/ns calculated
— Misalignment of DCs
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MC Generation

* Mokka 06-02 (old co-ordinate system) with
TBDesy0506 model

 ~100,000 electrons of 1, 3 and 6GeV produced
at normal incidence at z=-10,000mm (no position
or momentum spread)
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Mathematical Technique (Scattering)

« Extrapolated a truth track from the fake tracker layer (MC layer at
front of Ecal), per event, using position and momentum components

of highest energy particle registering a hit

— There are often multiple hits due to bremsstrahlung occurring upstream

« Took upstream half of hits in a given DC as hits in x, with the z hit
position at the centre of the upstream half; opposite for y (?77?)
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Mathematical Technique (Scattering)

« Defined hit position per DC
as deposited energy- Z Ei b’

weighted in x and :

|
- Calculated distance between Z E
track and hit position per DC, i
and calculated error matrix Dx D
elements (in DxDx, DyDy X, Xj
and DxDy):

Fake layer hit
position and

direction
Energy-weighted /

hit positions

Extrapolated
$ Dx track
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Results (Scattering
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Error matrix example
for DxDx at 1GeV:

Similar results in
DyDy; DxDy
negligible—can treat x
and y independently

Higher energies show
smaller diagonal
elements due to less
scattering (DxDx @
6GeV):

DC2 looks odd

1xx |(DC2 |[DC1 |(DC3 |[DC4
DC 2 |0.95mm [0.77  |1.14 | 1.56
DC 1 |0.77  |894 |16.96 |26.02
NC 3 |1.14  |16.96 |34.87 |54.42
NC 4 |1.56 |26.02 |54.42 |87.31
oxx |DC2 |DC1 |DC3 |DC4
DC 2 |1.53mmz [0.58 |0.33  |0.14
DC 1 |0.58 |1.07 |0.75 |0.86
NC 3 033|075 [1.45 |1.80
NC 4 |0.14 |0.86 [1.79 |3.18
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Results (Scattering
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Normalise error
matrices by their
diagonals to compare
off-diagonal elements

The extrapolated tracks
of lower energy
electrons, more subject
to scattering, should
have high correlations
visible in these
elements

Therefore, fitting a
track without taking
these correlations into
account gives the
wrong answer

1xxN |DC 2 |DC1 |DC 3 |DC 4
NC 2 |1 026 |0.20 |0.17
NC 1026 |1 0.96 |0.93
NDC 3020 |096 |1 0.99
DC 4 (017  |093 099 |1
6xxN |DC 2 |DC1 |DC 3 |DC 4
NC 2 |1 045 [0.22 ]0.07
NC 1045 |1 061 |0.47
NDC 3022|061 |1 0.84
DC 4 |0.07 |047 (084 |1
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Results (Scattering)

hit position in x in dc 1 (1GeV)
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* Plots are of truth hit
positions in x in DCs 1 & 2
for 1GeV, DC 2 for 6GeV.
Similar is seeniny

» Possible explanation for
1GeV results, but not for 6

 Needs more study
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hit position in x in dc 2 (1GeV)
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Results (Scattering)

From error matrices
calculated resolutions at
Ecal entrance

« Added (0.5mm)? to the

diagonal terms of the error
matrices when doing this
to include intrinsic DC
resolution

Eventually want to use
error matrices to
reconstruct track; these
are the resolutions for the
track fit
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p0 (mm) | p1 (mrad)
Xy | X 1Y
24 124 3.0 3.0
1.6 1.7 |1.2 |1.2
1.5 1.6 |0.8 |0.9




Initial Beam Spread

e Same as with

scattering except
extrapolated using
initial MC particle
properties (in this
case along positive z-
axis from z=-
10,000mm)

Used this to create
error matrices and
calculate resolution at
collimator
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pO (mm) p1 (mrad)
X y X y
14.2114.5/2.8 |2.8
6.7 |71 (1.2 |1.3
4.7 151 [0.8 (0.8




Initial Beam Spread
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In the future, plan is to use DESY physics
runs with these error matrices to see how
reconstructed beam spread compares with
expected spread due to scattering and DC
resolution

Can be subtracted in quadrature to obtain
real beam angle and spread

However, given the large resolutions of
Smm or more, it may be hard to be very
accurate
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Run-By-Run Effects (Data Analysis)

* Looking at (Gaussian-fitted) mean beam
position run-by-run for particular DC channels

« Assume drift velocity is 30 microns/ns

« Mean time for a given channel, a, can be
written as:

E: kaix_a/v_g

« Can add/subtract this quantity between
different channels in a given run to eliminate

terms
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Run-By-Run Effects Top left: DC 3, x wire
Top right: DC 3, y wire

P I Ots S h OW m ea n h It [__TDC Ch7 mean vs run number-230000 | ﬁ% [__TDC Ch8 mean vs run number—230000 | EI:II;ZII?iSSHStChIBSS
ti f rtain DC 1 v L= HIS  enal
ime for certain 3 o |

channels over all g ‘} e .
DESY runs e L o A P e,

}
P , ! e o Wt
. . 1200/ w J:{}N T 1250 ﬂ *I| e

y-axis range is : ;

11501 12000
350ns, equates to o | "3
~1 Omm 105Gy~ e 50200 0300 0G5 e s 200 20300
Overa” movement [__TDC Ch9 mean vs run number—230000 | nt b [__TDC ChA mean vs run number—230000 | EE%ESHS%

1250 Mean 158.1 1300 Mean 132

Of ~3mm between ]2005_ } BMS E_ RMS 7182

non-anoma|OUS 11505— n ;}ri‘ﬁ';f‘f"J«‘: L S 12005— |

runs is seen—large ’W}W T s TPV RS
compared to e | o B U
resolution we need " | ¥ "

Covv o b v b by by Ly Co o b v by b by o by gy
POSSIny bealll 9005 50 100 150 200 750 300 9509 50 100 150 200 250 300

movement
Bottom left: DC 4, x wire

Bottom right: DC 4, y wire

Page 15 © Imperial College London



Run-By-Run Effects
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Plots show means of
the sums of the
shown DC channel hit
times

Beam movement term
eliminated (assuming
constant v)

y-axis range ~6mm
Run-by-run motion
shows changes in

alignment/drift
velocity/cabling

Many effects at mm
level need to be
understood



Single Run Effect

« 2-D scatter plots of DC
channel hit times for run
230137

« A constant sumis a45
degree slope, but x and y
Intercepts are not equal

* |ndicates that drift
velocities differ between
channels by ~15%

* Requires measuring for
each run

« Lots of background noise,
so measurement of slope
IS not trivial
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Top: DC4x vs. DC3x
Bottom: DC4y vs. DC3y
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Double Electron Events
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No correlation between
x and y leads to 2-fold
ambiguity in calculating
position of double hits
(6-fold with triple hits)

How to deal with this in
track reconstruction?

Reconstruct all 4
tracks? Reconstruct x
and y separately?

What if 1 x and 2 y hits?
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Possible
reconstructed
positions

True hit positions

/

-




Summary

Scattering and beam spread error matrices
created, although possible issue with MC?

Need to know DC layout!

Beam movement looked at, although many
small effects need close scrutiny run-by-
run. Particularly, drift velocity does not
appear to be constant between channels.

Any ideas for double events?
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