ECAL analysis and very first comparisons with MC simulations

L. Morin and J-Y. Hostachy
LPSC-Grenoble (France)
M. Krim
University of Casablanca (Morocco)

Inside the CERN data

- Focus on e^{-}inside the Ecal at 0 degree and at 20, 30 and 45 degrees
- Version 04.02 of calice_reco

Electron selection (i.e. rejection of other particles) with the shower shape

Sigma $X, Y, Z=$ root mean square in X, Y, Z of the shower

Run 300672 e- $10 \mathbf{G e V}$

Electron selection (i.e. rejection of other particles)

- Very clean separation (few e^{-}lost)
- Still a tail at low energy

Run 300762 e- 10 GeV

Electron selection (i.e. rejection of other particles) with rotated ECal

- All we needed is Ecal angle from the beam line.
- This selection is still available with non-normal particle
- $\theta=20,30,45 \mathrm{deg}$.

Comparison with the Cherenkov

Run 300672 e- $10 \mathbf{G e V}$

Evolution of the shower shape as a function of the energy

- $\sigma_{\rho}=\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)^{1 / 2}$ has practically no variation with E
- σ_{z} increases as $\log (E)$
\Rightarrow Good criterion to identify electrons

Remark

- We observed that:
$\sigma_{\mathrm{x}}(\sim 11.2 \mathrm{~mm})>\sigma_{\mathrm{y}}(\sim 10.2 \mathrm{~mm})$ Probably due to a misalignment in X of the different active layers
- Maybe the new reconstruction code will improve this alignment

Mapping of the e^{-}reconstructed energy

- Tails at low energy due to the guard rings
- New cuts in order to reject the events affected by the inefficiency of the guard rings

Run 300762 e- 10 GeV

Checking: cuts on the e^{-}barycentre distributions

Run 300762 e- $10 \mathbf{G e V}$

Energy spectra

Run 300762 e- $10 \mathbf{G e V}$

Energy resolution :
 Gaussian fit (-1.5 $\sigma, 3 \sigma$)

$$
\frac{\sigma}{\mathrm{E}} \approx \frac{\mathrm{a}}{\sqrt{\mathrm{E}}}
$$

With
$a \approx 18.2 \%$

Run 300762 e- $\mathbf{1 0} \mathbf{~ G e V}$

Energy resolution

Linearity

Energy resolution with rotated Ecal

$\frac{\Delta E}{E}=\frac{a}{\sqrt{E}} \oplus \frac{0.047}{E} \oplus c$

Angle	a (\%)	$\mathbf{c}(\%)$
0	$18.02 \pm$	$0.95 \pm$
	0.05	0.04
20	$19.18 \pm$	$1.47 \pm$
	0.16	0.06
30	$20.33 \pm$	$1.61 \pm$
	0.06	0.02
45	$19.99 \pm$	$2.4 \pm$
	0.08	0.02

Energy resolution with rotated Ecal

$$
\frac{\Delta E}{E}=\frac{a}{\sqrt{E}}+c
$$

Angle	a (\%)	c (\%)
0	$17.69 \pm$	$0.19 \pm$
	0.09	0.02
20	$17.65 \pm$	$1.76 \pm$
	0.28	0.05
30	$18.04 \pm$	$0.76 \pm$
	0.10	0.02
45	$17.7 \pm$	$1.2 \pm$
	0.13	0.02

Beam contribution (in progress)

- From the CERN manual of H 6 beam :
$\frac{\Delta p}{p}=\frac{\sqrt{C 3^{2}+C 8^{2}}}{19.4 \%}$
Where C3 and C8 are the full width opening of collimators
- C3 and C8 are stored in the TB dB, that I don't know how to use it

First step inside Monte-Carlo Simulation ($\theta=0$ degree)

- Using Mokka with the detectors model TB0806

Visualization of an e- event

Beam profile

- We use SC2 and SC4 in coincidence to reproduce the trigger signal

LPSC Grenoble

Shift of about 30 mm

Beam profile

- We use selection of the simulated particles position to reproduce the trigger

Run300670 (6GeV e-)

Run300670 (6GeV e-)

Energy profiles obtained with the experimental data and with simulations

Run300670 (6GeV e-)

Run300670 (6GeV e-)

Energy resolution (comparison with MC)

Summary

- The electrons can be identified from the shower shape even if the Ecal is rotated
- Because the beam is aligned to the Ecal prototype structure, the reconstructed energy peak is asymmetric (tail at low energy due to the guardrings)
To reject the guard ring effect leads to optimistic results.
- The sampling term, without subtracting the momentum spread of the beam is about 18%.
- The Monte-Carlo predictions and the test beam results seem to be close.

Energy distributions of simulated electrons at 45 GeV

LPSC Grenoble

