

Study of 1.5m data paths along CALICE slabs

- the 'problem' & its scale
- technology and architecture choices
- test-slab design options
- current status
- outlook and plans

The 'problem' & its scale

Slab design

- Constraints on data paths:
 - Limited space (800 mum PCB thickness)
 - Tight power budget (~0 mW)
 - Long slabs (~1.6m)

Technology choices:

- VFE chip on board: build slab in segments to conserve yield
- Introduces a joint between PCBs...
- CMOS signalling where possible for low power consumption

Signal distro & readout architecture

Signal routing options on a panel:

- common lines vs. point-to-point
- Signal routing along a full slab:
 - slab-wide or per-panel distribution

•Fast links at low duty cycle are power efficient

Power-speed tradeoff
governed by transmission
line characteristics

- ¿ how much redundancy should be built in ?
- ¿ should clock & data be combined for increased reliability ?

13-02-2007 Calice meeting, DESY Maurice Goodrick, Bart Hommels

UNIVERSITY OF

PCB traces = Transmission Lines

Run ACTL simulation with following geometry:

- 64 mu (2.5 thou) PCB thickness
- 50 mu (2.0 thou) pre-preg thickness
- 17 mu (0.7 thou) = 0.5 oz Cu layer

Trace width	C0	ZO	
(mum)	(pF/m)	(Ohm)	
200	373	16.5	
150	305	20.3	
100	229	27.1	
75	±160	32.8	

I ow Z and high C makes
CMOS noisy and powerhungry

Slab Panel PCB board build

- Recent revision of Slab PCB thickness = 800um
- Expected thickness ~ 770um + resist + text
- Top, Bottom and Differential Signal layers
- 5 Power and Ground Planes

UNIVERSITY OF

Estimated data readout speed

• readout of all channels for all BX'es results in unrealistically high data rates

х Gbps/chip

• duty cycle/buffering reduces rate 200x

xxx Mbps

 readout speed determined by data reduction through zero-suppression

*х-х*хх *Mbps*

ultimate case: few events/chip/Bx train (still dominated by noise...)
 χ Μbps

Assumptions:

- 72 channels/chip
- 5k events/bx train
- 1 ms train length
- 5 Hz repetition rate

Slab model

Build a slab model to test the many variables

•Many signal distro/routing options incorporated in PCB

•Many output standards and speeds supported by FPGA

•Includes long, folded lines for measurements on transmission lines

Slab model: current status

- 10 PCBs manufactured
- PCB support bars for slab assembly
- 1 PCB populated and powered:

initial tests (JTAG chain, programming of devices)

Panel PCB interconnects

The ends of the slab

Multiple Test Panels forming a Test Slab

- clock generation
- control signals (token,etc.)
- data reception & buffering
- interface with outside world

Digilent starter kit serves as FE board:

•Xilinx Spartan 3E-500 FPGA

supports many IO standards over large speed range

- large user connector (~40x I/O pins up to 100MHz)
- 32MB SDRAM
- Ethernet 10/100 PHY
- USB-JTAG programming

Test slab status

- Slab panels: 1 panel populated and being tested not all panels are to be equipped with FPGAs
- Intermediate board: schematics, PCB design well under way
- Firmware for pVFE FPGAs is ready 'v.0.99'
- Essentials for FE firmware available clock manager, deserialiser, data buffer

pVFE and FE firmware: BER test

First Bit Error Rate (BER) test:

- ✓ all logic in single FPGA
- separated Tx/Rx blocks
- ✓ signals routed through external wires

The expected 'bathtub' plot looks a bit ragged, but it has a clear bottom –in the wrong place?

Test & measurement programme

- BER tests on panels with multiple pVFEs
- different clocking & readout schemes
- other options: clock+data encoding, redundancy routing, etc.
- folded traces: transmission characteristics
- determine data transmission speed limits

UNIVERSITY OF

Outlook & Plans

- Complete test slab programme
- Optimise PCB wrt the data rate requirements
- Determine ultimate DAQ performance requirements using test slab PCB max. throughput figures
- Contribute to the Calice slab design by providing feedback –where and if appropriate
- Make our components (design & test tools) available to the Calice programme
- Start design study of FE board:
 - possibly including a redesigned intermediate board
 - modular design for maximum flexibility