Recent development of MPPC by Hamamatsu: possible applications to hadron calorimetry

OUTLINE

- The Micro Pixel Photon Counter from Hamamatsu
- MPPC and calorimetry
- Characterization of MPPC in DESY: techniques and results
- Investigation of the direct readout of the scintillation light as an option for the future calorimeter design

Nicola D'Ascenzo DESY Erika Garutti DESY Alexandra Eggemann DESY

The Micro Pixel Photon Counter from Hamamatsu

WAVELENGTH (nm)

- Good efficiency in the blue region: ideal for the direct readout of plastic scintillator.
- Package: plastic protection
- Now commercial product !

From datasheet:

Pixels	Received	Sugg. op. Voltage	Sugg. op. Over Voltage	Dark Rate >0.5 pixels	Dark Rate >1.5 pixels	Gain (10^5)
400	5 samples	~76+-0.1V	~2+-0.1V	220K - 250K	9K - 10K	7.4-7.5
1600	5 samples	~78+-0.1V	~2+-0.1V	50K - 60K	0.05K - 0.09K	2.6-2.7

VADDONISOFA

Application od MPPC to calorimetry

REQUIREMENTS:

- Low cross talk and dark rate (<3 KHz)
- High signal efficiency in the cut (>95%)
- Dinamic range : ?
- Easy fabrication of the cells: direct coupling? Thinner scintillator?

Characterization of the samples

- Light response from LED
- 60 ns integration gate
- The measuremets show a good uniformity of the samples.
- Full characterization of 400 pixels samples to be terminated

Setup for the light readout with a source

- Readout of a plastic scintillator light, directly or with the standard green wavelength shifting fiber.
- Tile wrapped with 3M reflector. In case of the direct readout, only a window of 1mm x 1mm open in front of the MPPC
- Source: Ru106 (β^{-})
- Integration gate 80 ns
- External trigger (Photomultiplier tube)
- Reproducibility of the measurement +- 3% systematic (coupling, positioning etc ...)

Energy deposit spectra: method of analysis

Fit: sum of gaussians. The area of the peaks is distributed according to a landau distribution (smeared by a poisson). The Most Probable Value (MPV) is determined with a gaussian fit around the peak of the area plot (right).

Green fiber readout vv. direct coupling

The MPPC shows a good efficiency in the blue light collection. As expected, the efficiency of the 400 pixels detector is higher (x2) than the one of the 1600 pixels .

Direct readout at the edge: middle and corner position

The difference of the most probable value obtained in the two position is of +-3% (value obtained repeating the same test on all the samples). This is coherent with the systematics of this measurement. No significative difference can be estimated!

Application to calorimetry

- Scan over different thresholds until the integral over threshold = 3KHz (Red line)
- Define the efficiency as the normalized integral above the fixed threshold, excluding the pedestal.

In this particular example:

The cut is extabilished at 2 pixels, where the noise corresponds to 3 Khz.

The efficiency is 98%

Application to calorimetry: efficiency scan

- Direct coupling with 1600 pixels: suggested 2.2-2.4 V over voltage. Cut at ~1.5 pixels. ~7 pixels/MPV
- Green fiber readout with 1600 pixels : suggested 2.2-2.6 V over voltage. Cut at ~1.5 pixels. ~12 pixels/MPV
- Direct readout with 400 pixels: 1.6 V 2 V overvoltage, cut at ~2 pixels. ~10 pixels/MPV

Conclusions

• The wavelength shifting fiber readout system is reproducible:

- With Hamamatsu MPPC 1600 pixels:
 - Operating at an overvoltage of ~2.6 V an efficiency of the signal collection of ~98% is achieved. This is an improvement respect to the actual system.
 - The Most Probable value of the landau is 12 photoelectrons: the dynamic range is also larger than the actual one (1156 pixels, MPV=15).
 - These devices fit well also in a possible design where the thichness of the scintillator is reduced, imporving the compactness of the calorimeter.

• The direct coupling solution with the MPPC is possible:

- With Hamamatsu MPPC 1600 pixels:
 - Operating at an overvoltage of ~2.2V, an efficiency of the signal collection of ~94% is reached, making the system equivalent on the present one.
 - The Most Probable value of the landau is 6 photoelectrons: the dynamic range increases respect to the present one used in the calorimeter.
- With Hamamatsu MPPC 400 pixels
 - Operating at an overvoltage of \sim 2V, an efficiency of the signal collection of \sim 98% is reached, making the system equivalent on the present one.
 - The Most Probable value of the landau is ~ 11 photoelectrons: the dynamic range can be problematic...
- The direct readout system is easier to produce, and less expensive than the present one.
- Light collection uniformity still to verify.
- Physics input in order to set the bounds on the required dynamic range.