Supersymmetry and Some of its Experimental Tests

K.S. Babu

Department of Physics, Oklahoma State University Oklahoma Center for High Energy Physics

National Taiwan University

Lunch Seminar

June 13, 2005

Outline

☆ **Motivations**

☆ Supersymmetry Breaking

☆ Direct Tests at Colliders

☆ Indirect Tests

- Rare B Decays

- **Dipole Moments**

- Lepton Flavor Violation

☆ SUSY GUTs and Proton Decay

 \bigstar **Conclusions**

Stability of Higgs Mass

With SUSY, gauge boson contribution is cancelled by gaugino contribution.

SUSY Spectrum

SM Particle	s SUSY Partners
Q	ilde Q
u^c	$ ilde{u}^c$
Spin = $1/2$ d^c	\tilde{d}^c Spin = 0
L	$ ilde{L}$
e^c	$ ilde{e}^c$
Spin = 0 H_u	$ ilde{H}_u$ Online 4/2
H_d	\tilde{H}_d Spin = 1/2
g	\widetilde{g}
Spin = 1 W	\tilde{W} Spin = 1/2
В	$ ilde{B}$

 $R = (-1)^{3B+L+2S}$

Evolution of Gauge Couplings In Standard Model

Evolution of Gauge Couplings in six-Higgs-doublet SM

Figure 1: Leading-order evolution of the gauge couplings from their low-energy values to the unification scale in the six-Higgs-doublet standard model. The couplings meet around 10^{14} GeV, within the accuracy of a leading-order calculation.

S. Willenbrock, hep-ph/0302168

Gauge Coupling Unification in MSSM

Structure of Matter Multiplets

$$egin{aligned} Q &= egin{pmatrix} u_1 & u_2 & u_3 \ d_1 & d_2 & d_3 \end{pmatrix} &\sim (3,2,rac{1}{6}) \ u^c &= (u_1^c & u_2^c & u_3^c) \sim (\overline{3},1,rac{-2}{3}) \ d^c &= (d_1^c & d_2^c & d_3^c) \sim (\overline{3},1,rac{1}{3}) \ L &= egin{pmatrix}
u &= \
u^c &\sim (1,2,rac{-1}{2}) \
u^c &\sim (1,1,+1) \
u^c &\sim (1,1,0) \end{aligned}$$

u_1	:	$ \uparrow\downarrow\uparrow\uparrow\downarrow>$
u_2	:	$ \uparrow\downarrow\uparrow\downarrow\uparrow>$
u_{3}	:	$ \uparrow\downarrow\downarrow\uparrow\uparrow>$
d_1	:	$ \downarrow\uparrow\uparrow\uparrow\downarrow>$
d_2	:	↓↑↑↓↑>
d_{3}	:	$ \downarrow\uparrow\downarrow\uparrow\uparrow>$
u_1^c	:	$ \downarrow\downarrow\uparrow\downarrow\downarrow>$
u^c_2	:	$ \downarrow\downarrow\downarrow\uparrow\uparrow\downarrow>$
$u^c_{\sf 3}$:	↓↓↓↓↑>
d_1^c	:	$ \uparrow\uparrow\uparrow\downarrow\downarrow>$
d^c_2	:	$ \uparrow\uparrow\downarrow\downarrow\uparrow\downarrow>$
$d^c_{\sf 3}$:	$ \uparrow\uparrow\downarrow\downarrow\uparrow>$
u	:	$ \uparrow\downarrow\downarrow\downarrow\downarrow\downarrow>$
e	:	$ \downarrow\uparrow\downarrow\downarrow\downarrow\downarrow>$
e^{c}	:	↓↓↑↑↑>
$ u^c$:	$ \uparrow\uparrow\uparrow\uparrow\uparrow>$

MSSM Lagrangian

$$W = Qu^{c}H_{u} + Qd^{c}H_{d} + Le^{c}H_{d}$$
$$+L\nu^{c}H_{u} + M_{R}\nu^{c}\nu^{c} + \mu H_{u}H_{d}$$
$$\bigcup \mu \sim 10^{2} \text{ GeV}$$

R-parity Violation: Potentially Dangerous Proton Decay

$$W_{R-V} = LLe^c + QLd^c + u^c d^c d^c + \mu' LH_u$$

Soft SUSY Breaking: $\mathcal{L}_{SUSY} = \Sigma m_{\phi}^2 \phi^{\dagger} \phi + A_u \tilde{Q} \tilde{u}^c H_u + A_d \tilde{Q} \tilde{d}^c H_d$ $+ A_l \tilde{L} \tilde{e}^c H_d + A_\nu \tilde{L} \tilde{\nu}^c H_u$ $+ B \mu H_u H_d + \Sigma M_\lambda \lambda \lambda$

Generic soft breaking leads to large flavor violation

 $(K^0 - \overline{K}^0 \text{ Mixing, } \mu \rightarrow e\gamma \text{ etc.})$

Natural R-parity and µ-term

Discrete gauge symmetries can protect µ-term and act as R-parity.

$$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline Q & u^c & d^c & L & e^c & v^c & H_u & H_d & \theta \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ \hline \end{array}$$

Z₄*Model* K.S. Babu, I. Gogoladze, K. Wang, Nucl. Phys. B660, 322 (2003) $A_2 = [SU(2)_L]^2 \times Z_4 = 3$ L. Krauss, F. Wilczek, (1989)

Anomalies

L. Ibanez. G. Ross, (1991)

T. Banks, M. Dine, (1992)

Green-Schwarz Anomaly Cancellation Mechanism For Z_N

$$A_3 = A_2 + p\frac{N}{2} \qquad p \in \mathbb{Z}$$

 $A_3 = [SU(3)_C]^2 \times Z_4 = 1$

Guidice-Masiero Mechanism

$$\mathcal{L}_{\mu-term} = \int d^4\theta H_u H_d \frac{Z^*}{M_{pl}}$$

SUSY Breaking Scenarios

- Gravity Mediated
 - ► mSUGRA
 - Anomaly Mediation
 - Flavor Symmetry
- Gauge Mediated

Figure 1: Plot of 5σ reach in jets $+ \not\!\!\!E_T$ channel for mSUGRA model .

Fig. 6. Expected 5σ discovery limits of various MSSM Higgs signals at LHC for luminosities of 30 fb⁻¹ and 100 fb⁻¹.

D. Denegri et al, CMS NOTE 2001/032 [hep-ph/0112045].

$B \rightarrow \mu^+ \mu^-$ Decay in Supersymmetry

K.S. Babu, C. Kolda, Phys. Rev. Lett. 84, 228 (2000)

 $-\mathcal{L}_{eff} = \bar{D}_R Y_D Q_L H_d + \bar{D}_R Y_D \left[\epsilon_g + \epsilon_u Y_U^{\dagger} Y_U\right] Q_L H_u^* + h.c. + \dots$

MSSM is a general two-Higgs-doublet model.

$$\Rightarrow \quad \bar{y}_b \simeq y_b \left[1 + (\epsilon_g + \epsilon_u y_t^2) \tan \beta \right]$$
$$V_{ub} \simeq V_{ub}^0 \left[\frac{1 + \epsilon_g \tan \beta}{1 + (\epsilon_g + \epsilon_u y_t^2) \tan \beta} \right]$$
$$\tan \beta \equiv \frac{\langle H_u \rangle}{\langle H_d \rangle}$$

Hall, Rattazzi, Sarid (1993)

Leading contributions to ϵ_g and ϵ_u . Indices i, j, k, n label flavors

$$\epsilon_g \simeq \frac{2\alpha_3}{3\pi} (\mu^* M_3 f(M_3^2, M_{\tilde{Q}_L}^2, M_{\tilde{d}_R}^2))$$

$$\epsilon_u \simeq \frac{1}{16\pi^2} (\mu^* A_u f(\mu^2, M_{\tilde{Q}_L}^2, M_{\tilde{u}_R}^2))$$

For $\tan \beta \simeq 50 - 60$, $m_A \simeq 100 - 400$ GeV $Br(B \to \mu^+ \mu^-) \sim 10^{-7} - 10^{-8}$

SUSY CP Violation in $B_d \rightarrow \phi K_s$ Decay

Observable	BaBar	Belle	Average	SM prediction
$Br (in 10^{-6})$	$8.1^{+3.1}_{-2.5}\pm0.8$	$8.7^{+3.8}_{-3.0}\pm1.5$	$8.4^{+2.5}_{-2.1}$	$\simeq 5$ (see text)
$S_{\phi K_S}$	$-0.19^{+0.52}_{-0.50}\pm0.09$	$-0.73 \pm 0.64 \pm 0.18$	-0.39 ± 0.41	0.734 ± 0.054

$$\begin{split} \mathcal{A}_{\phi K}(t) &\equiv \frac{\Gamma(\overline{B}_{\text{phys}}^{0}(t) \to \phi K_{S}) - \Gamma(B_{\text{phys}}^{0}(t) \to \phi K_{S})}{\Gamma(\overline{B}_{\text{phys}}^{0}(t) \to \phi K_{S}) + \Gamma(B_{\text{phys}}^{0}(t) \to \phi K_{S})} \\ &= -C_{\phi K} \cos(\Delta m_{B} t) + S_{\phi K} \sin(\Delta m_{B} t), \\ C_{\phi K} &= \frac{1 - |\lambda_{\phi K}|^{2}}{1 + |\lambda_{\phi K}|^{2}}, \quad S_{\phi K} = \frac{2 \operatorname{Im} \lambda_{\phi K}}{1 + |\lambda_{\phi K}|^{2}}, \\ \lambda_{\phi K} &\equiv -e^{-2i(\beta + \theta_{d})} \frac{\overline{A}(B^{0} \to \phi K_{S})}{A(\overline{B}^{0} \to \phi K_{S})}. \end{split}$$

Lepton Dipole Moments

$$\mathcal{L}_{eff} = \frac{a_{\mu}}{2m_{\mu}} \bar{\psi} \sigma^{\mu\nu} \psi F_{\mu\nu}$$

$$a_{\mu}(SM) = 11\ 659\ 182.1(7.2) \times 10^{-10}$$

$$a_{\mu}(EXP) = 11\ 659\ 203(8) \times 10^{-10}$$

 $\delta a_{\mu} = 21(11) \times 10^{-10}$

SUSY Contributions:

$$\delta a_{\mu} \simeq rac{lpha_2}{8\pi} rac{m_{\mu}^2}{M_{\scriptscriptstyle SUSY}^2} aneta$$

 \sim few $imes 10^{-10}$ if $M_{SUSY} \lesssim$ 500 GeV

FIG. 2: (a) The contour plots for the a_{μ}^{SUSY} , m_{h^0} , and $B(B_s \to \mu^+ \mu^-)$ with N = 1 and $M = 10^6$ GeV. (b) The branching ratio for $B_s \to \mu^+ \mu^-$ as a function of the messenger scale M in the GMSB with N = 1 for various Λ 's with a fixed $\tan \beta = 50$. The dashed parts are excluded by the direct search limits on the Higgs and SUSY particle masses.

Electric Dipole Moments

$$\mathcal{L}_{eff} = -\frac{i}{2} d_f \bar{\psi} \sigma_{\mu\nu} \gamma_5 \psi F^{\mu\nu}$$

Violates CP

Electron:
$$d_e(Exp) \leq 2.1 imes 10^{-27}$$
 e-cm
Neutron: $d_n(Exp) \leq 6.3 imes 10^{-26}$ e-cm

Phases in SUSY breaking sector contribute to EDM.

SUSY Contributions:

A, B are complex in MSSM

$$d_n \sim (\sin \phi) \ 10^{-23} \text{ e-cm}$$
$$d_e \sim (\sin \phi) \ 10^{-24} \text{ e-cm}$$
$$\Rightarrow \ \phi \simeq 10^{-2} - 10^{-1}$$
$$\textcircled{1}$$

Effective SUSY Phase

If parity is realized asymptotically,

$$Y_U, \ Y_D, \ Y_E$$
 hermitian $A_U, \ A_D, \ A_E$ hermitian

EDM will arise only through non-hermiticity induced by RGE.

$$d_e \simeq 10^{-28} - 10^{-27}$$
 e-cm;
 $d_n \simeq 10^{-26} - 10^{-27}$ e-cm

Subject to experimental tests

$$d_{\mu} = 10^{-22} - 10^{-23}$$
 e-cm

Dutta, Mohapatra, KB (2001)

Lepton Flavor Violation and Neutrino Mass

Seesaw mechanism naturally explains small v-mass.

$$\mathcal{L} = \bar{\nu}_L M_D \nu_R + \frac{1}{2} \nu_R^T M_R \nu_R + h.c.$$
$$M_\nu = -M_D M_R^{-1} M_D^T$$

Current neutrino-oscillation data suggests

$$M_R \sim (10^{12} - 10^{15}) \text{ GeV}$$

Flavor change in neutrino-sector

In standard model with Seesaw, leptonic flavor changing is very tiny.

$$Br(\mu
ightarrow e \gamma) \propto rac{1}{M_{Pl}^4} \sim 10^{-50}$$

In Supersymmetric Standard model

$$Br(\mu \rightarrow e\gamma) \propto rac{1}{M_{SUSY}^4} \sim 10^{-10}$$

For $M_R \leq \mu \leq M_{Pl}$ ν_{R} active

flavor violation in neutrino sector Transmitted to Sleptons

Borzumati, Masiero (1986) Hall, Kostelecky, Raby (1986) Hisano, et al (1995)

SUSY Seesaw Mechanism

$$\mathcal{W} = f \nu^c \nu^c \Delta + Y_{\nu} \nu^c L H_u$$
$$M_D = Y_{\nu} v_u \; ; \; M_R = f v_{B-L}$$

If *B-L* is gauged, $M_{\rm R}$ must arise through Yukawa couplings.

Flavor violation may reside entirely in f or entirely in Y_{ν}

If flavor violation occurs only in Dirac Yukawa Y_{ν} (with mSUGRA)

$$\Delta m_{ij}^2 (i \neq j) \simeq -\frac{1}{8\pi^2} (3m_0^2 + A_0^2) (Y_{\nu}^{\dagger} Y_{\nu})_{ij} \left(\ell n \frac{M_{Pl}}{M_{B-L}} \right)$$

If flavor violation occurs only in *f* (Majorana LFV)

$$\begin{aligned} A_{\ell i j}(i \neq j) &\simeq \frac{-3}{64\pi^4} [A_{\ell}(Y_{\nu}^{\dagger}Y_{\nu}f^{\dagger}f + f^{\dagger}fY_{\nu}^{\dagger}Y_{\nu})]_{i j} \left(\ell n \frac{M_{P\ell}}{M_{B-L}}\right)^2 \\ \Delta m_{i j}^2(i \neq j) &\simeq \frac{-3(m_0^2 + A_0^2)}{32\pi^4} [Y_{\nu}^{\dagger}Y_{\nu}f^{\dagger}f + f^{\dagger}fY_{\nu}^{\dagger}Y_{\nu}]_{i j} \left(\ell n \frac{M_{P\ell}}{M_{B-L}}\right)^2 \end{aligned}$$

LFV in the two scenarios are comparable.

More detailed study is needed.

Neutrino Fit

For Majorana LFV scenario, take

Dutta, Mohapatra, KB 2002

 $m_d \propto diag[c\epsilon^3, \epsilon, 1]$ $\epsilon \sim 1/10$

$$\mathcal{M}_{\nu} = m_0 \begin{pmatrix} e\epsilon^n & h\epsilon^m & d\epsilon \\ h\epsilon^m & 1 + a\epsilon & 1 \\ d\epsilon & 1 & 1 + b\epsilon \end{pmatrix}$$

$$f = \frac{m_{D,3}^2}{d^2 m_0 v_{B-L}} \begin{pmatrix} (a+b)c^2\epsilon^5 & cd\epsilon^3 & -cd\epsilon^2 \\ cd\epsilon^3 & -d^2\epsilon^2 & dh\epsilon^2 \\ -cd\epsilon^2 & dh\epsilon^2 & (e-h^2)\epsilon^2 \end{pmatrix}$$

 $(m_1, m_2, m_3) = (-2.7 \times 10^{-3}, 6.4 \times 10^{-3}, 8.6 \times 10^{-2}) \text{ eV}$

$$\mathbf{U} = \begin{pmatrix} 0.85 & -0.52 & -0.053 \\ 0.33 & 0.62 & -0.72 \\ -0.40 & -0.59 & -0.70 \end{pmatrix}$$

For Dirac LFV scenario

 $M_R = (9 \times 10^{13} \text{ GeV}) \times (\text{Identity Matrix})$ $Y_{\nu} = \begin{pmatrix} 0.04 + 0.074i & -0.073 + 0.029i & 0.025 - 0.034i \\ -0.073 + 0.029i & -0.22 + 0.011i & -0.35 - 0.013i \\ 0.025 - 0.034i & -0.35 - 0.013i & -0.24 + 0.016i \end{pmatrix}$

Same neutrino oscillation parameters as in Majorona LFV

The two scenarios differ in predictions for

 $egin{array}{ccc} \mu & o & e\gamma \ au & o & \mu\gamma \ au & o & e\gamma \end{array}$

Dirac LFV

Figure 3: Branching ratio of $\mu \to e\gamma$ for hierarchical neutrinos and uncertainties of future neutrino experiments in the mSUGRA scenarios leading to the largest (L, upper) and the smallest (H, lower) LFV rates.

F. Deppisch, et al, hep-ph/0206122

 $\mu
ightarrow e \gamma$ Majorana LFV

Dutta, Mohapatra, KB (2002)

Flavor Symmetry and Fermion Mass Hierarchy

- Complex Yukawa couplings. SUSY in mSUGRA with real universal soft parameters.
- Fermion mass matrices:

$$\begin{split} M_{u} &\sim \langle H_{u} \rangle \begin{pmatrix} \epsilon^{8} & \epsilon^{6} & \epsilon^{4} \\ \epsilon^{6} & \epsilon^{4} & \epsilon^{2} \\ \epsilon^{4} & \epsilon^{2} & 1 \end{pmatrix} \qquad M_{d} \sim \langle H_{d} \rangle \epsilon^{p} \begin{pmatrix} \epsilon^{5} & \epsilon^{4} & \epsilon^{4} \\ \epsilon^{3} & \epsilon^{2} & \epsilon^{2} \\ \epsilon & 1 & 1 \end{pmatrix}, \\ M_{e} &\sim \langle H_{d} \rangle \epsilon^{p} \begin{pmatrix} \epsilon^{5} & \epsilon^{3} & \epsilon \\ \epsilon^{4} & \epsilon^{2} & 1 \\ \epsilon^{4} & \epsilon^{2} & 1 \end{pmatrix} \qquad M_{\nu_{D}} \sim \langle H_{u} \rangle \epsilon^{s} \begin{pmatrix} \epsilon^{2} & \epsilon & \epsilon \\ \epsilon & 1 & 1 \\ \epsilon & 1 & 1 \end{pmatrix}, \\ M_{\nu^{c}} &\sim M_{R} \begin{pmatrix} \epsilon^{2} & \epsilon & \epsilon \\ \epsilon & 1 & 1 \\ \epsilon & 1 & 1 \end{pmatrix} \quad \text{See-Saw} \Rightarrow \qquad M_{\nu}^{light} \sim \frac{\langle H_{u} \rangle^{2}}{M_{R}} \epsilon^{2s} \begin{pmatrix} \epsilon^{2} & \epsilon & \epsilon \\ \epsilon & 1 & 1 \\ \epsilon & 1 & 1 \end{pmatrix}. \end{split}$$

Here small parameter $\epsilon \simeq .2$ and p = (0, 1, 2) for $\tan \beta = (50, 20, 5)$ • This experimental fact motivates a generation dependent U(1) symmetry.

U(1) flavor charge	assignment
--------------------	------------

Field	$U(1)_A$ Charge	Charge notation
Q_1, Q_2, Q_3	4, 2, 0	q_i^Q
L_1, L_2, L_3	1+s,s,s	q_i^L
u_1^c, u_2^c, u_3^c	4, 2, 0	q_i^u
d_1^c, d_2^c, d_3^c	$1+p,\ p,\ p$	q_i^d
e_1^c, e_2^c, e_3^c	4 + p - s, 2 + p - s, p - s	q_i^e
$\nu_{1}^{c}, \nu_{2}^{c}, \nu_{3}^{c}$	1, 0, 0	q_i^{ν}
H_u, H_d, S	0, 0, -1	$(h,\bar{h},q_{\pmb{s}})$

The value of Yukawa couplings at M_F from low energy data through two–loop RGE $(\tan \beta = 5)$

$$\begin{split} Y^u &= \begin{pmatrix} (1.45+1.60\,i)\,\epsilon^8 & (-0.563-1.24\,i)\,\epsilon^6 & (1.50-0.397\,i)\,\epsilon^4 \\ (-0.769-0.584\,i)\,\epsilon^6 & (0.765-0.109\,i)\,\epsilon^4 & (-0.255-0.261\,i)\,\epsilon^2 \\ (-0.282-0.204\,i)\,\epsilon^4 & (0.274-0.44\times10^{-1}\,i)\,\epsilon^2 & 0.554-2.80\times10^{-5}\,i \end{pmatrix} \\ Y^d &= \epsilon^2 \begin{pmatrix} (1.87-1.69\,i)\,\epsilon^5 & (1.93+0.849\,i)\,\epsilon^4 & (1.29+0.957\,i)\,\epsilon^4 \\ (-0.404-0.248\,i)\,\epsilon^3 & (0.5542+1.54\times10^{-2}\,i)\,\epsilon^2 & (0.702-0.546\,i)\,\epsilon^2 \\ (-0.152-0.435\,i)\,\epsilon & 0.312-0.314\,i & 0.543-4.74\times10^{-4}\,i \end{pmatrix} \\ Y^e &= \epsilon^2 \begin{pmatrix} (3.52\times10^{-2}+0.480\,i)\,\epsilon^5 & (-1.85-1.74\,i)\,\epsilon^3 & (-0.539-0.579\,i)\,\epsilon \\ (-0.170-0.612\,i)\,\epsilon^4 & (1.15+4.65\times10^{-2}\,i)\,\epsilon^2 & 0.319-0.321\,i \\ (0.538-0.421\,i)\,\epsilon^4 & (-0.419-0.536\,i)\,\epsilon^2 & 0.784+9.74\times10^{-5}\,i \end{pmatrix} \\ Y^\nu &= \epsilon^2 \begin{pmatrix} (0.232-0.190\,i)\,\epsilon^2 & (0.217-6.09\times10^{-2}\,i)\,\epsilon & (-0.206-0.637\,i)\,\epsilon \\ (0.638-0.652\,i)\,\epsilon & -7.82\times10^{-2}+0.537\,i & 0.804+0.296\,i \\ (0.305-0.392\,i)\,\epsilon & -4.41\times10^{-3}+0.277\,i & 0.404-3.89\times10^{-2}\,i \end{pmatrix} \end{split}$$

Anomalous U(1) Symmetry and Lepton Flavor Violation

Enkhbat, Gogoladze, KSB (2003) Ĩ, S, X, $\left\{ \left(\widetilde{m}_L^2 \right)_{ij}^A \simeq -q_i^L |q_s| g_F^2 \delta_{ij} m_0^2 \operatorname{Tr}(Q) \frac{\ln\left(M_{st}/M_F\right)}{8\pi^2} \right\}$ $\int \int \int \left(\tilde{m}_L^2\right)_{ij}^G \simeq \left(q_i^L g_F\right)^2 \delta_{ij} \left(M_{\lambda_F}\right)^2 \frac{\ln\left(M_{ot}/M_F\right)}{2\pi^2}$ ĩ٠ $\delta A^e_{ij} \simeq -M_{\lambda_F} g_F^2 Y^e_{ij} Z^e_{ij} rac{\ln\left(M_{st}/M_F
ight)}{4\pi^2}$

$\mu \rightarrow e\gamma$ in Anomalous U(1) Models

Enkhbat, Gogoladze, KSB (2003)

$\tau \rightarrow \mu \gamma$ in Anomalous U(1) Models

Enkhbat, Gogoladze, KSB (2003)

EDM from Flavor Symmetry

The EDM induced by the $U(1)_A$ flavor gaugino is estimated to be

$$\begin{split} d_e/e &\simeq \frac{\alpha v_d M_{\tilde{B}}}{8\pi \cos^2 \theta_W} \frac{1}{m_l^2} A\left(\frac{M_B^2}{m_l^2}\right) \frac{(|q_s|g_F)^2 \log\left(M_{st}/M_F\right)}{8\pi^2} \sum_{i=2,3} \left[C_i^m + C_i^A\right] \ln\left[\frac{Y_{1i}^e Y_{i1}^e}{Y_{ii}^e}\right],\\ C_i^m &= \frac{(|q_s|g_F)^2 \log\left(M_{st}/M_F\right)}{8\pi^2} \frac{m_0^4 \left(A_0 - |\mu| \tan\beta\right)}{m_0^6} H_i^L H_i^R, \end{split}$$

The flavor dependent factors:

$$\begin{split} H_i^L &= 4 \left(M_{1/2}/m_0 \right)^2 \left((q_i^L)^2 - (q_1^L)^2 \right) - (q_i^L - q_1^L) \operatorname{Tr}(q) \text{ and } H^R = H^L(q^L \to q^e), \\ C_i^A &= 2 \frac{M_{1/2}}{m_{\tilde{l}}^2} \left(Z_{i1}^e - Z_{11}^e \right). \end{split}$$

 C^m -soft mass corrections, C^A - A-term corrections

Figure 4: The Electron Electric Dipole Moment. The red line: experimental bound

Is. Enkhbat, KSB, hep-ph/0406003

Figure 5: Muon Electric Dipole Moment.

Figure 6: Neutron Electric Dipole Moment.

Figure 7: Deuteron Electric Dipole Moment.

Figure 8: Electron Electric Dipole Moment by purely the neutrino effects.

Conclusions

- Supersymmetry: attractive candidate to stabilize Higgs mass
- Suggested by gauge coupling unification
- Before direct discovery, SUSY can show up in:
 - Lepton flavor violation ($\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$)
 - ► $B_S \rightarrow \mu^+ \mu^-$ Decay
 - ► Muon *g-2*
 - $\blacktriangleright d_e, d_n$
 - Proton decay
 - Dark matter