Cavity Processing Facility

Harry Carter, Tug Arkan, Cristian Boffo, Dan Olis and Allan Rowe

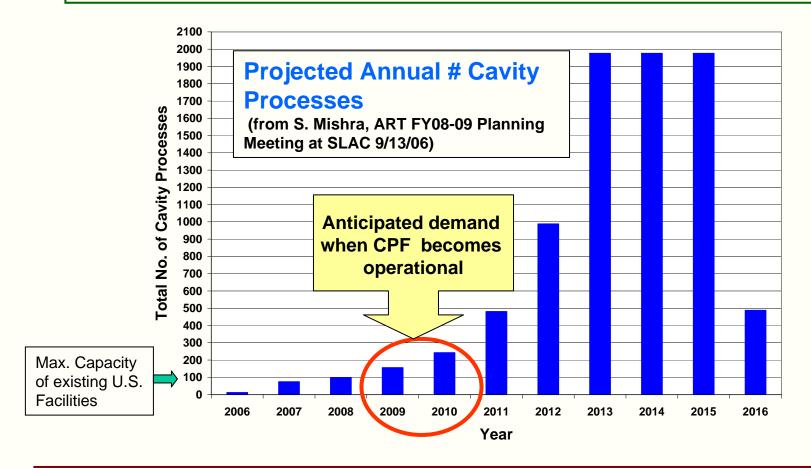
Fermilab Technical and Accelerator Divisions

Outline

- Establishing the Need for this Facility
- Process Definition
- Cavity Processing Facility (CPF) Scope and Infrastructure Requirements
- CPF Cost Estimate
- CPF Schedule
- Conclusion

Goals for SRF Infrastructure: CPF

- To perfect U.S. fabrication & processing of SRF cavities and modules and to demonstrate performance with a full range of testing (including beam)
 - Deploy ILC design / processing / assembly techniques
 - Establish process controls to reliably achieve high gradient cavity operation and module performance
 - Test cavities and modules at the component level and in a systems test to demonstrate yield, reproducibility and beam performance
- To facilitate commercial production of SRF components and modules


- Train and transfer SRF technology to the US industry
- Allow industrial participation and input to the process
 - Similar to SC cable and magnet technology transfer
- To participate in SRF Research and Development
 - Develop expertise in SRF technology and provide training base for construction and operation of future accelerators
 - Our attempt to fit into the world's SRF community

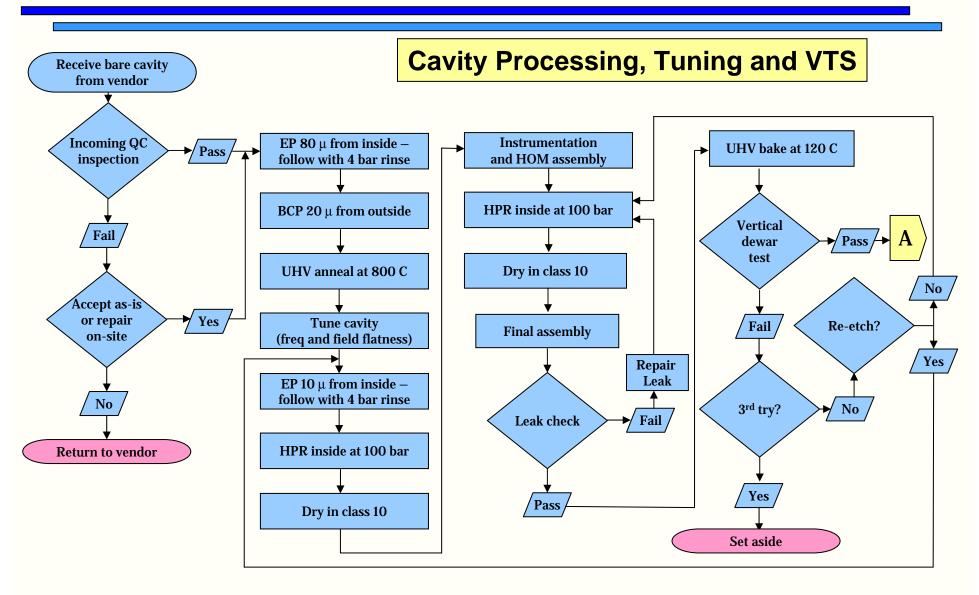
All of this work will be carried out with US/international collaboration

Establishing the Need for this Facility

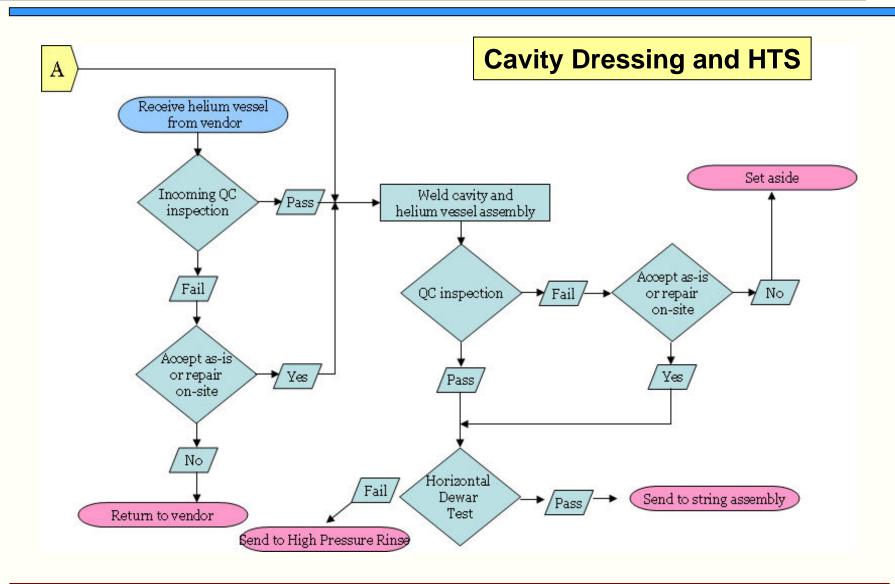
• Existing U.S. capability is insufficient to meet the anticipated demand---as demonstrated in Shekhar's talk

US Laboratories Capacity

Program	FY07	FY08	FY09	FY10	Capacity Needed/yr by FY10
Cavity Processing (EP, HPR, Bake)	Jlab-30 Cornell-10	Jlab-40 Cornell-10 ANL-40	Jlab-40 Cornell-10 ANL-40 Fermilab-20	Jlab-40 Cornell-10 ANL-40 Fermilab-100	200
Vertical Testing	Jlab-30 Cornell-10 Fermilab-20	Jlab-40 Cornell-10 Fermilab-75	Jlab-40 Cornell-10 Fermilab-75	Jlab-40 Cornell-10 Fermilab-200	200
Horizontal Testing	Fermilab-6	Fermilab-24	Fermilab-24	Fermilab-72	72
Cryomodule Assembly	Fermilab-1	Fermilab-4	Fermilab-12	Fermilab-12	12
Cryomodule Test	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML	Fermilab: ILCTA_NML CMTS	12


Process Definition

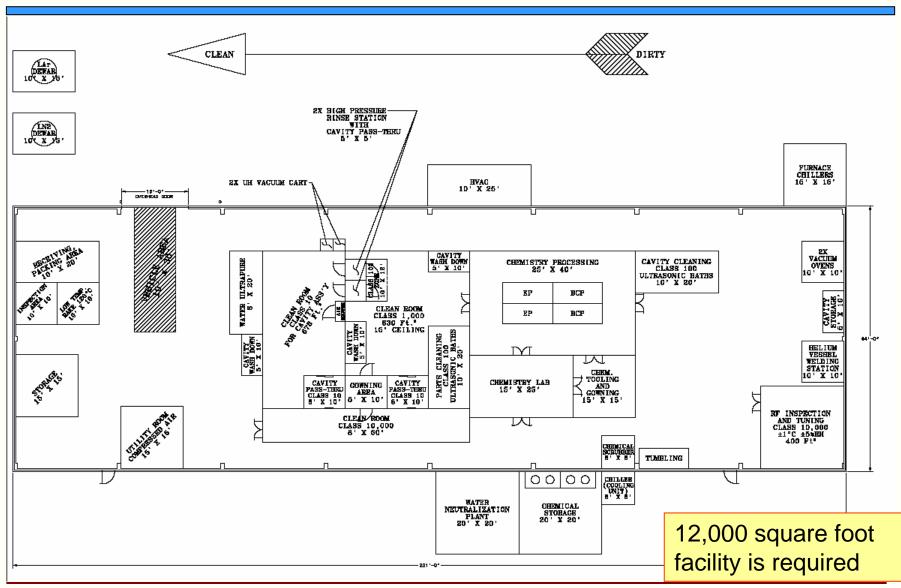
- The term "process" defines the complete procedure that transforms a fabricated cavity into a fully qualified cavity at a specified operating gradient and quality factor (in our case 35MV/m and 1.0e10). It includes the following operations:
 - Cavity processing
 - Cavity tuning
 - Vertical testing
- A flow chart delineating the procedure is presented on the next slide


Process Flow Chart

Cavity Flow Chart Subsequent to Completing the Process Flow Chart

CPF Functions

- Perform pre-EBW etching of cavity components
- Receive and store fabricated cavities
- Perform mechanical inspection of cavities
- Perform internal and external chemical processing
- Perform high pressure rinsing
- Perform high and low temperature cavity bakes
- Tune cavities for fundamental frequency and field flatness
- Prepare cavity for vertical test
- Receive vertically tested cavities
- Install helium vessels (dress cavities)
- Prepare dressed cavities for horizontal testing
- Receive cavities from HTS and send to string assembly facility (CAF)


Cavity Processing Facility Features

- Separate chemical storage building
- Chemistry laboratory for small samples and pre-EBW etching
- Wet station area for component cleaning prior to bringing into clean rooms
- Class 1000 clean room housing major chemical processing equipment (EP and BCP cabinets, etc.)
- Exhaust fume scrubber
- Acid neutralization system
- Ultra Pure Water (UPW) system
- High Pressure Rinse (HPR) stations
- High and low temperature furnaces
- RF inspection and Automated cavity tuning system
- Class 10 clean room for final prep of cavities prior to VTS
- High purity gaseous argon and nitrogen systems
- TIG welding station for helium vessel installation
- Ultra clean vacuum pumping system and leak checking systems

CPF Floor Plan at MW

CPF Funding Requirements

Infrastructure		M&S		SWF		Total with Indirect	
Cavity Fabrication Infrastructure	\$	3,000	\$	675	\$	4,380	
Cavity Processing Facilities	\$	11,100	\$	4,590	\$	18,945	
Vertical Test Stand (VTS 2 & 3)	\$	2,625	\$	1,845	\$	5,475	
Horizontal Test Stand (HTS 2)	\$	1,220	\$	1,057	\$	2,805	
Cavity/Cryomodule Assembly Facilties (CAF_MP9 & ICB)	\$	690	\$	270	\$	1,158	
NML Facility (ILCTA_NML)	\$	18,270	\$	23,220	\$	51,700	
Cryogenics for Test Facilities	\$	10,690	\$	950	\$	13,692	
Cryomodule Test Stand	\$	5,400	\$	2,970	\$	10,180	
Material R&D	\$	870	\$	722	\$	1,960	
Illinois Accelerator Research Center	\$	20,000	\$	4,050	\$	28,605	
Grand Total (\$k)	\$	73,865	\$	40,349	\$	138,900	

Item	\$K
M&S: SWF:	11,100 4,590
Grand Total w/o Indirect:	·

Grand Total with Indirect:

Assumptions

- •Facility is located on FNAL site
- •3 year schedule from inception to completion and fully operational
- •Funding profile assumes 1/3 TPC available each fiscal year

18,945

CPF Itemized (Direct) Cost Estimate

Item		1&S Costs	Labor	5	SWF	Tot	tal Cost	
	\$K		FTE*yrs		\$K		\$K	
Building Preparation	\$	250	0.5	\$	68	\$	318	
Building Utility	\$	250	2.5	\$	338	\$	588	
Infrastructure	9	230	2.3	Ф	336	Ф	300	
Clean Rooms	\$	1,000	0.5	\$	68	\$	1,068	
Ultra-Pure Water	\$	150	1.5	\$	203	\$	353	
System				Ė				
Clean Room Hardware	\$	150	1.25	\$	169	\$	319	
Ultrasonic Cleaning	\$	150	0.5	\$	68	\$	218	
Tanks				· ·	00	Ψ	210	
Vacuum Furnaces (2)	\$	1,000	0.25	\$	34	\$	1,034	
Lo temp.furnaces (2)	\$	200	1	\$	135	\$	335	
Cavity Tuning Devices and RF test equipment & fixtures	\$	1,000	1.25	\$	169	\$	1,169	
HPR Systems (3)	\$	1,200	1.25	\$	169	\$	1,369	
EP Systems (3)	\$	1,600	1.75	\$	236	\$	1,836	
BCP Systems (2)	\$	1,000	1.75	\$	169	\$	1,169	
Tumbling (2)	\$	500	1.23	\$	135	\$	635	
Chemistry Lab	\$	450	4	\$	540	\$	990	
Chemistry storage,	Ф	430	4	Ф	340	ф	990	
preparation, treatment infrastructure	\$	1,000	1.25	\$	169	\$	1,169	
Vacuum Equipment and Hardware	\$	400	1.25	\$	169	\$	569	
TIG Welding Machines, fixtures	\$	150	0.75	\$	101	\$	251	
Miscellaneous Fixtures and Equipment	\$	400	4	\$	540	\$	940	
Monitoring, controls, HMI integration	\$	250	3.25	\$	439	\$	689	
ES&H preparation			5	\$	675	\$	675	
Totals	\$	11,100	34	\$	4,590	\$	15,690	

Cost Drivers

- Clean Rooms (Classes 10, 100, & 1000)
- Vacuum Hi Temp Bake Furnaces
- Cavity Tuning Devices & RF test equipment
- HPR Systems
- EP Systems
- BCP Systems
- Chemistry Storage, Preparation & Treatment Infrastructure

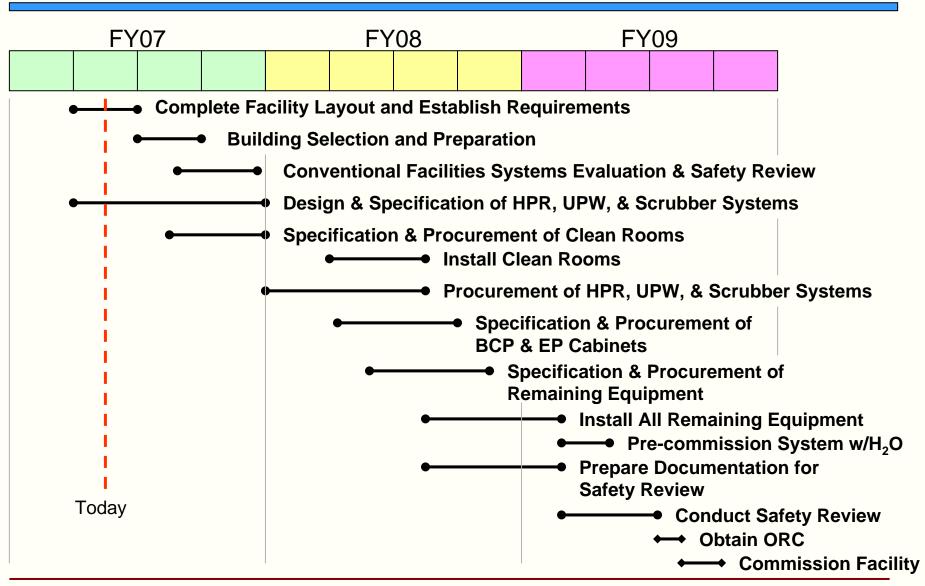
3 Year CPF Procurement Plan

Year One

- Prep building for CPF, inc. utility infrastructure
- Procure & install clean rooms
- Procure clean room hardware
- Procure high and low temp. vacuum furnaces
- Procure & install UPW system
- Procure & install ultrasonic cleaning tanks
- Procure cavity tuning system

Year Two

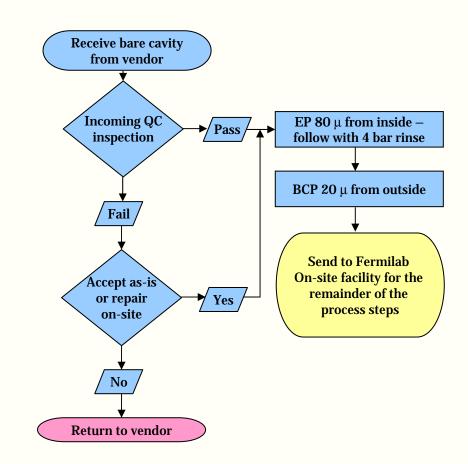
- Procure EP and BCP systems
- Procure HPR systems
- Procure mechanical polishing (tumbling) systems
- Procure chemistry lab equipment


Year Three

- Procure & install scrubber system & treatment infrastructure
- Procure vacuum equipment & hardware
- Install all remaining equipment
- ES&H preparation
- Conduct safety review
- Commission facility

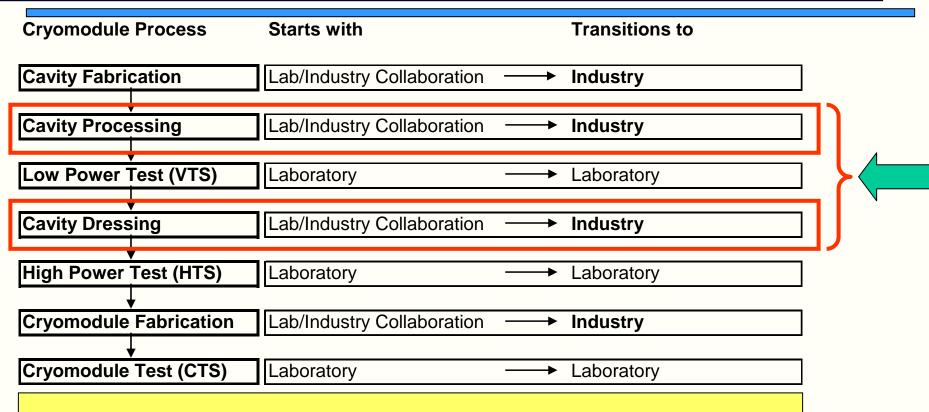
CPF Schedule Timeline

Alternative: An Off-Site CPF



- A contract could be written for the design, construction, and operation of an off-site facility located very near FNAL.
- Facility would be financed by ILC funds and owned by government, but operated by industry
- Advantages:
 - Operation by an <u>experienced</u> electropolishing industrial firm using their manpower
 - Significantly reduces the need for large quantites of nasty chemicals on FNAL site
 - Initiates the industrialization program cavity processing
- Unknown total cost, estimate ~ \$6M due to the cost of a building (either leased or purchased)

Off-Site CPF Scope of Work



- Perform initial cavity inspection
- Perform bulk chemistry operations
 - Internal 80u EP
 - External 20u BCP
- Possibly include HPR;
 otherwise, ship cavity
 to FNAL in container
 filled with UPW

Development of Industry

The technology for cavity fabrication & processing, cavity dressing and cryomodule fabrication will be transferred to Industry.

Cryogenic testing of cavities and cryomodules along with beam tests will remain the responsibility of US laboratories.

Conclusion

- The combined total process capacity of present U.S. cavity processing facilities has been shown to be inadequate to handle the anticipated near term demands.
- A concept for a new facility (CPF) capable of meeting the ILC pre-production demands has been presented. Development of the facility specification and design is underway at FNAL.
- If located on the Fermilab site, the CPF could be completed in ~2 years at a total cost of \$15.7M.
- Splitting the CPF along the lines of completing the bulk chemistry processing in an off-site facility may be advantageous and merits further investigation