First Results on the VXD Tracking Studies

On behalf of 4th Concept Software Group

D. Barbareschi V. Di Benedetto E. Cavallo F. Ignatov A. Mazzacane G. Terracciano

Outlook

 All studies have been conducted in the ILCroot framework

- Studies are the contribution to the DCR
- Several Event Generators used:
 - Pandora-Pythia
 - Guinea-Pig
 - Box

VXD Simulation

Geat3 for hit production

- Gaussian smearing of hits (5μm x 6 μm) to make Fastrecpoints
- Pattern recognition through Parallel Kalman Filter + Standalone Tracker

SiD/4th VXD (May06)

VXD Event Display

6

Material Budget (BP + VXD)

Material Budget ($\eta=0$)

Beam Pipe: 0.18% X/X_o
VXD:
Detector & support: 0.8% X/X_o
Outer shield: 0.16% X/X_o

VXD Full Simulation

- Hits: produced by MC (G3,G4,Fluka)
- SDigits: simulate detector response for each hit
- Digits: merge digit from several files of SDigits (example Signal + Beam Bkgnd)
- Recpoints: Clusterize nearby
 Digits
- Pattern recognition through Parallel Kalman Filter

January 30th, 2007

VXD SDigitization

- Follow the path of the track inside the silicon in steps of up to 1 μm
- Per each step:
 - convert the energy deposited into charge
 - spreads the charge asymmetrically across several pixels:

$$f(x, z) = Errf(x_{step}, z_{step}, \sigma_x, \sigma_z)$$
$$\sigma_x = \sqrt{T \cdot k / e \cdot \Delta l / \Delta V \cdot step}$$

 $\Delta l = Sitickness, \quad \Delta V = bias voltage, \quad \sigma_x = \sigma_x \cdot fda$

- Simulate capacitive pixel coupling by switching on nearby pixels
- Add random noise
- Simulate electronic threshold

January 30th, 2007

INFN Napoli - C. Gatto

SDigitization Parameters

- Size Pixel X = 20 μm
- Size Pixel $Z = 20 \ \mu m$
- Eccentricity = 0.85 (fda)
- Bias voltage = 18 V volts
- cr = 0% (coupling probability for row)
- cc = 4.7% (coupling probability for column)
- threshold = 3000 Electrons
- electronics = 0 (elettronic noise)

Clusterization

- Create a initial cluster from adjacent pixels (sidewise only)
- subdivide the initial cluster in smaller
 NxN clusters (N to be optimized)
 Kalman filter picks up the best clusters

VXD Standalone Tracker

- Uses Clusters leftover from Parallel Kalman Filter
- Requires at least 4 hits to build a track
- Cluster finding in VXD in two steps
 - Step 1: look for 3 RecPoints in a narrow row or 2 + the beampoint.
 - Step 2: prolongate to next layers each helix constructed from a seed.
- After finding clusters, all different combination of clusters are refitted with the Kalman Filter and the tracks with lowest χ^2 are selected.
- Finally, the process is repeated attempting to find tracks on an enlarged road constructed looping on the first point on different layers and all the subsequent layers.
- In 3.5 Tesla B-field -> P_t > 20 MeV

Standalone Tracker Performance (1) 10 muons/evt (P_t range 20-1000 MeV)

14

Standalone Tracker Performance (2)

15

Standalone Tracker Performance (3)

- 10 muons/evt (P_t range 20-1000 MeV)
- |tan(λ)|<2.57

Standalone Tracker Performance (4)

• e⁺e⁻ -> t<u>t</u> -> 6 jets

January 30th, 2007

INFN Napoli - C. Gatto

Beam Pair Background Study

- Study coordinated by Rob Kutsckhe
- Interface to Guinea-Pig output added to ILCroot
- Full Digitization used for this study
- Tested with current SA VXD tracker and generic accelerator parameters

Acc.dat

- \$ACCELERATOR:: NLC-B-500
- { energy = 245. ;
- particles = 0.95;
- emitt_x = 4.5;
- $emitt_y = 0.1;$
- beta_x = 12. ;
- beta_y = 0.12 ;
- sigma_z = 120. ;
- dist_z = 0 ;
- espread = 0.003 ;
- which_espread = 0;
- offset_x = 0 ;
- offset_y = 0. ;
- waist_x = 0 ;
- waist_y = 0;
- angle_x = 0 ;
- angle y = 0;
- angle_phi = 0 ;
- trav_focus = 0;
- charge_sign = -1;
- }

Should we worry?

• 31367 hits

- 20 reconstructed particles (8 in the Central Tracker)
- Better not to overlook this background

What's Next

- Reconstruction in VXD with hit smearing is OK
- Full digitization and clusterization completed last week
- Currently under test
- Preliminary results are very consistent with gaussian smearing
- Need to optimize:
 - Clusterization algorithm (very dependent on the VXD technology)
 - Error from clusterization