Ioffe Photocathode Acquisition Plans

- Decide on type of structure that is of highest interest
- Purchase 2 identical wafers now and test
- Once test results are digested, purchase remaining 4 (or so) wafers, each wafer having a variation of one or more parameters
- Note: share wafers with SPTU

AllnGaAs/AlGaAs strained-well SL

- Maximum VB splitting
- Maybe less problem with surface charge limit
- At SPIN06, noted by Mamaev in presentation to be the best prospect, but not discussed in any detail in the contributed paper
- Xmas '06 (7-307): Pe=91.5%, QE=0.85% @ 830 nm

SL $\ln_{0.155}AI_{0.2}Ga_{0.645}As(5.1nm)/AI_{0.36}Ga_{0.64}As(2.3nm)$, 4 pairs **Polarization** QE 100 10¹ 80 10⁰ % 10⁻¹ 60 Polarization, 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ -0 650 600 700 **750** 800 550 850 900 λ, nm

Spectra of electron emission: Polarization P and Quantum Efficiency QE

$SL In_{0.155}AI_{0.2}Ga_{0.645}As(5.1nm)/AI_{0.36}Ga_{0.64}As(2.3nm)$

AllnGaAs/GaAs strained-barrier with minimal CB offset

- High vertical e- mobililty and low spin relaxation rate
- Problem with surface charge limit?
- PESP04: Pe=91%, QE=0.3% @ ~827 nm (HC at 450°C)
- SPIN06: Pe=91%, QE=0.5%

18.5 periods of SL: $ln_{0.2}Al_{0.23}Ga_{0.67}As$ (4nm)/Ga As(1.5nm); Room temperature

In_xAl_yGa _{1-x-y}As/GaAs SLs

Barrier heights: for electrons $U_c = E_{c2} - E_{c1}$, heavy holes $U_{hh} = E_{vh2} - E_{vh1}$ and light holes $U_{lh} = E_{vl2} - E_{vl1}$. Negative values of U_c imply that, for electrons, the GaAs layer is a barrier and the $In_xAl_yGa_{1-x-y}As$ layer is a well. The splitting energy $\Delta E_{hh-lh} = E_{hh1} - E_{h1}$. The band gap of the superlattice $E_g = E_{e1} - E_{hh1}$. B is the emission probability

##	х	у	Thickness										
			a Quantum well	b barrier	U_c	U_{hh}	U _{lh}	ΔE _{hh - Ih}	E_g	\mathcal{E}_{max}	P _{max}	QE @ ε _{max}	В
	In	Al	angstr	angstr	meV	meV	meV	meV	eV	eV	%	%	
5-777	20	23	15	36	-3	79	157	60	1.471	1.485	91	0.14	0.028
6-296	20	22	15	40	-43	52	128	59	1.426	1.432	86	0.05	0.014
6-330	25	27	11	40	-8	90	180	77	1.482	1.494	88	0.57	0.089
6-405	26	31	11.3	30	19	111	202	76	1.51	1.521	89	0.5	0.11
6-444	26	37	11.3	30	73	145	236	79	1.569	1.6	84	0.65	0.13

Goals for growth

- Reduce γ and δ by minimizing fluctuations of the heterolayer composition
- Precise modulation doping
- With which structure do the loffe people believe they can do the best growth job?

Testing at SLAC

- Effect of low temperature heat cleaning on Pe
 - Using As cap
 - Using AHC (restore to CTS)
- Surface charge limit