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Silicon-on-Insulator

SOl is based on a thin active circuit
layer on an insulating substrate.
Modern technology utilizes ~200 nm
of silicon on a “buried” oxide (BOX)
which is carried on a “handle” wafer.

The handle wafer can be high
quality, detector grade silicon, which
opens the possibility of integration of
electronics and fully depleted
detectors in a single wafer with very
fine pitch and little additional
processing.

Used for high speed, circuits,
immune to SEU

Important for 3D integration
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3D Circuits @ :

A 3D chip is comprised of 2 or more layers of Wire bonds Wire bonds
semiconductor devices which have been thinned, to adjacent to adjacent
bonded together, and interconnected to form a chip chip
“monolithic” circuit. SOl is the favored :
technology. End of column logic
« The layers (also called tiers) can be comprised | Serial Powering &
of devices made in different technologies.
« The move to 3D is being driven by industry. Pixel Cell Electronics
— Going 3D reduces trace length, Reduces R, | L
L, C

Edgeless Pixel Array
— Improves speed

— Reduces interconnect
power, crosstalk

— Reduces chip size
— Processing for each layer can be optimized

« 3D allows for creative solutions, e.g. Technology described in

— Accommodates serial powering R.Yarema talk at CMS/ATLAS
sLHC meeting

— Higher functionality/area
— Thinner assemblies



SOl Concept for HEP @ =
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Technology “Roadmap” t

« Explore commercial processes which include processing of the handle
wafer as part of the fabrication process for SOI (OKI, American
Semiconductor).

« Understand the available technologies for 3D (MIT-LL, RTI, IZM,
Ziptronix...)

* Develop expertise in necessary technologies

— Wafer thinning
— Post processing (handing, annealing, dicing...)
— Pixel physical design (fields, analog/digital coupling ...)

 RA&D is underway to understand :

— How to retain good, low leakage current, detector performance
through the CMOS topside processing?
— What is the optimal process for forming the detector diodes?
* Model charge collection, shielding
— How does the charge in the BOX due to radiation and potential of
the handle wafer affect the operation of the top circuitry?
— How does topside digital circuitry affect the pixel amplifier?




Edgeless Thinned Detector Concept 3D
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Thinned Sensor Studies XDE

We are producing a set of thinned, “edgeless” sensors at MIT-LL as a initial
test of these concepts

* Producing a set of detectors thinned to 50-100 microns for beam and probe
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— Validate process
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 Explore and validate the e _—Strip detectors
technologies which provide &
thinned detectors sensitive to &

« the edge

— Measure the actual dead
region in a test beam

« Parts available for prototype .
vertex structures i Fpix2 pixel
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— Test structures Q _
— Strip detectors (12.5cm ,

and ~2 cm) 0 MIT-LL Wafer-desigried at FNAL
_ FP|X2 plxel deteCtOrS / Touse : mouseSingleSelectPt M: leHiMousePopUp () E: ddsNewsClose ()

— Detectors to mate to 3D chip
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Laser annealing D

Problem: provide backside contact to 0.80
thinned wafer while keeping topside 070 | XeCl
below ~400 deg C 060 - . yag
+ Use araster scanned eximer laser to 0.50 | T Linear{XeCl o
melt the silicon locally — this activates 040 | o YRR
the implant and repairs the 0301
implantation damage by recrystallizing "l
the silicon 0.00 | s | | | |
» Diffusion time of phosphorus in molten o o5 1 15 2 25 3 35
silicon is much less than cooling time Laser Energy (Jicm"2)

therefore we expect ~uniform

distribution in melt region Oak Ridge studies of melt depth vs laser energy

To study and qualify this process we took a sample of Run2b HPK, low leakage 4x10
cm, strip detectors and reprocessed them
« Backgrind by ~50 microns to remove back implant and aluminization, polish
» Re-implant detector using 10 KeV phosphorus at 0.5 and 1.0x1075/cm?
» Laser anneal and measure CV and |V characteristics
« AMBP - 1.2, 1.0, 0.8 J/cm?2, 248 nm laser
« Cornell - 1.0 J/lcm?



Laser Annealing Results

(Cornell)

4x 10 cm HPK Sensor Laser Annealing Results
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SIMS Measurements

Secondary lon Mass Spectroscopy
provides implant depth profiles by - | | , B =
analysis of ions ejected from the g |

surface upon ion bombardment: |

Fermi Phosphorous Profiles for Samples 923 & 526
200 300

{13

» Two samples, before and after
1.2 J/lcm? 248 nm laser anneal

» Goal was ~>2x101° concentration
* Melt depth ~300 nm

P CONCENTRATION (atomsit

%" Figure 3

Mar 22,

Laser melt depth is close to expectation, phosphorus concentration close to
expectation

* We have annealed additional samples with less energy. This should yield
better diodes

» Explore leakage current as a function of dose.



Fermilab SOI Detector Activities

S

SOl detector development is being pursued by Fermilab at two different
foundries :OKIl in Japan, and American Semiconductor Inc.(ASI)/Cypress in

_US . The two processes have different ¢

haracteristics as seen below

OKT Process

Process | 0.15um Fully-Depleted SOl CMOS Process | 0.18um partially-Depleted dual
process, gate SOl CMOS process,
1 Poly, 5 Metal layers (OKI Electric Dual gate transistor (Flexfet),
Industry Co. Ltd.). No poly, 5 metal
Ameri Semicondutor /
SOl Wafer Diameter: 150 mm¢, C(: merican ?mlcon utor
] ypress Semiconductor.)
wafer Top Si: Cz, ~18 Q-cm, p-type, ~40
nm thick
Buried Oxide: 200 nm thick
Handle wafer: Cz, >1k Q-cm (No SOl Wafer Diameter: 200 mmo,
type assignment), 650 um thick wafer Handle wafer: FZ>1k QQ-cm (n
(SOITEC) type)
Backside | Thinned to 350 um, no contact paciele Th:.nr;‘ec‘ljtc; AL ”ml’ d and
processing, plated with Al (200 nm). € polishe ’ aser annealed an
plated with Al.

AST Process




“Mambo” D
SOl X-Ray Chip ~
Fermilab has submitted a Ema — s

+~M4

design to a KEK sponsored

0.15 um SOI multiproject run aitiit ” w2

OKI which incorporates diode m ' ChoLy

formation by implantation RS M PO O WD VTR = ,.,‘-Sl (PMOS&NMOS)
] N p+ pt Pt p+ | p+ BOX 200nm

through the BOX. The chip \‘:Q/ | ] kg

incorporates a 64 x 64 26 - S A M B /lof?;‘s";

micron pitch 12 bit counter 750.2000 Qo 95um S perphery T6um st

array for a high dynamic range Al 2006 IHV (10v)

X-ray or electron microscope Counting pixel detector plus readout circuit

imaging. « Maximum counting rate ~ 1 MHz.

Max 13 um implant pitch is » Reconfigurable counter/shift register

determined by the “back gate” * 12 bit dynamic range

effect where the topside  Limited peripheral circuitry

transistors thresholds are » Drivers and bias generator

shifted by handle potential » Array size 64x64 pixels

Should come to FNAL this 350 micron detector thickness

month.



Inverter

Back gate Effect
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Substrate voltage acts as a back gate
bias and changes the transistor
threshold - like another gate
» Requires minimum ~15 micron diode
spacing to control surface potential

(from Y. Arai (KEK))




American Semiconductor

&

FLEXFET Process

« ASI process based on dual gate transistor called a Flexfet.
» Flexfet has a top and bottom gate.

» Bottom gate shields the transistor channel from charge build up in the BOX
caused by radiation.

« Bottom gate also shields the transistor channel from voltage on the substrate
and thus removes the back gate voltage problem.

» The process can include a “pinning layer” which can be used to shield the
analog pixel from digital activity

Bntl:nate

Bottom gate

shields channel
from voltage
at BOX fo Substrate

substrate /

interface.




Pixel Design in ASI 0.18um XDE

As part of a phase | SBIR with ASI O N
FNAL designed a demonstration SOl L T
Pixel cell R _
» Voltage ramp for time marker |\\ T JT?IT
« ~20 micron analog pixel '_lﬂ“:/ > ’,:”EL'E‘:’
— Folded cascode amp A e | I
— Current feedback \% pogammable e !
— Discriminator : /I{TI/I :
— Two time ramp sampling stages ":;T““"T’h‘.":ﬂ—rl_ll_ T e
« Sample 1 - crossing time - i
« Sample 2 - time over threshold for 16

ury
m
|

analog pulse height information

e Additional 3-5 bit counter for coarse
time stamp

* Provides single bunch resolution

This technique can be tested with the
3D chip
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ASI Pixel Simulations

* Analog section layout ~19 x 22
microns

« Simulation of preamp/discriminator
system for time over threshold
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FNAL 3D Chip

Fermilab has contributed an ILC SR
readout chip design to MIT-LL 0.18 | | ol Eite BEE
micron three tier SOI 3D multiproject m =
~2.5 mm x 2.5 mm chip, 64x64 20 BN 3D-Via
micron pixels - 'S
Does not include sensor integration
Design includes amp/disc, time —— ——
stamp, pixel control, token passing - L] _
— Store analog and digital time e
stamps in the hit pixel cell. v mm
— Store double correlated sample - i s
in pixel
Low node capacitance allows low
current front end design
Due back mid-August

IR Tier-1:501

675-um Silicon Substrate




3-Tier Chip *§iD

_ N Pod tosensor __ _ _ _ _ _ _ _ — -
_ Sample 1 Tier 3
— o
* Correlated double sample ‘ ] v D
* Noise ~ 35 e- ‘ O I fg '
» Adjustable disc. threshold o] Gad | = = ]
* Few hundred nA/pixel : 2 | | vih 7~ [Delay[s. Trig
« Most bias currents (times) Tier 3 > | |k‘_ |k =
adjustable. analog _ | _ Toandogoutputbuses |
« Analog and 5 bit digital 5 Digital time stamp bus Tier 2
time stamps — measure L L¢ L¢ L - L - —Jk Write data /
: : : R R |
ansggzl”gsgf;zé?)lsl(t)lutlon i:renr‘ez — bO (bl |b2 |b3 b4 Analogi JIES
° L. vaq e e k<— k<— k<—k<.k<_ <Readda'ra
* Individual kill/inject S‘ramp 1 Analog| ramp bus
* 3 vias /plXCl Analog time output bus
, T |
: . Tier 1 =——> v ~ Tier
Chip designers: Data Test input s.R%E;‘: < -
Tom Zimmerman e 4 YOout
sparsification R
Gregory Deptuch P Y address| D FF 'jﬁ“d
Jim Hoff v | ¥Dataclk
X address Token out Read data
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SOI/3D Advantages - §i

(

» Advantages of SOI

— High resistivity substrate available for fully depleted diodes - large signal,
controlled charge spreading

— No limitation on PMQOS transistor usage as in CMOS MAPs
* Full low power CMOS, integration of digital and analog in pixel
« No parasitic charge collection

— Sense nodes can have very low capacitance — crucial for low power
signal/noise

— SOI Radiation hard to >1 Mrad, low SEU sensitivity
— Can be made “edgeless”
— No bump bonds
— 100% diode fill factor
* In addition 3D
— enables mixtures of technologies
— separate optimization of layers
— higher density



