How to Decide on SiD Calorimetry in 12 months?

Gerald C. Blazey NICADD/Northern Illinois University

SiD Workshop April 9-11, 2007 Fermilab

Time Frame/Constraints

 Since Valencia (Nov 06) WWS urging two detector "down select"

CDR 2008 →

Intense 2 year engineering period → EDR 2010.

In addition DOE requesting 5 year plans

SiD challenge: About 18 months to decide on HCAL technology & draft a CDR consistent with DOE constraints!

Preliminaries

- ECAL not at issue:
 - W/Si a singular, distinguishing feature of SiD.
- Ensure full BCAL and FCAL integration
 - Mostly a note to myself/management
- Main issue/focus is HCAL:
 - Specifications
 - Multiple technologies (GEM, RPC, Scin/SiPM and Micromegas)
 - Limited funds & time scales
- This is meant to be a proposal and to elicit discussion.
 - Discussed with SiD Executive and Advisory Boards.
 - Document now in circulation now nine pages
 - At this point a technical emphasis, needs "benchmarking"
 - What follows are highlights

Basic HCAL Requirements

Tracking:

Efficiently allow tracking of charged particles through volume.

Jet Resolution:

- Sufficient depth such that any loss in the coil or energy measured with degraded resolution (relative to the HCal) in the outer detectors (such as a TCMT) does not significantly impact jet energy resolutions.
- Sufficiently small cell size to allow true and efficient separation and association of closely spaced energy clusters with the correct tracks.
- Sufficient sampling so as not to significantly degrade the jet energy resolution via the sampling term.

Cost:

 Outer radius must limit the cost of the solenoid and muon system to reasonable levels.

Rate:

 Sufficient rate capability so as not to lose information, particularly in the forward directions

Performance Criteria

- MIP Efficiency/pad & Hit multiplicity/MIP
- Uniformity of response across active layers
- Need for or ease of calibration
- Recovery time after hit(s) and after a significant beam event
- Rate of discharges (gas)
- Track-cluster separability
- PFA jet resolution at a) Z-pole, b) 250, 500, 1000
 GeV
- Magnetic field issues signal location offsets in barrel and endcaps (gas)
- Response to neutrons

Technology Issues

- Maturity and previous history
- Reliability (Stability)
- Availability of components (in quantity)
- Active layer thickness
- Smallest readout unit size
- Technical risk of approach
- Ease of assembly, testing, installation, and commissioning ("scalability").
- Effects of aging on performance

Cost

- Overall HCal cost
- Active layer cost as a percentage of total cost
- System development costs
- Costs for assembly and test

Five Steps Forward

• Step 1:

- Initial prototyping complete on small scale systems complete
- Short April reports addressing performance criteria & technological issues.

• Step 2:

- Analysis of CALICE tests at CERN 2006 and comparison with MC
- Initial results on direct scintillator/SiPM coupling
- Results from current GEM/RPC Slice Tests
- Reports at LCWS07

- Step 3: Late 2007 SiD Review
 - Evaluate in parallel
 - Three technologies
 - Simulations/PFA to "benchmark" performance
 - Generic engineering design.
 - Establish the next phase of the SiD calorimeter development to deliver the necessary input to enable a unique choice of HCal technology, or leading candidate plus alternate(s)
 - Unfortunately, with pre-HEPAP schedule, decisions for technical choice(s) to be included in the SiD CDR may be based solely on simulation/PFA and small or partial prototype results.
 - Procedure yet to be established but must be based on criteria and transparent.

Step 4:

- Build a full stack (gas) or partial ILC prototype (gas or scintillar) as soon as possible to verify performance for inclusion in the SiD CDR (if possible) or EDR.
- Mid 2008 Review to decide on CDR technology choice and further R&D while writing EDR.
- Step 5:
 - Two-three year testing period of ILC prototypes for completion of EDR.

The Elephant in the Room

- The current externally imposed schedule is clearly compressed
- Even if funding available likely little information will be available from the actual ILC prototypes
- Response:
 - Although expensive and inefficient we may need to mitigate the risk by carrying forward more than one choice.
 - We'll need to stay alert to external signals!

The Second Big Issue

- Should we reconsider the degree to which PFAs drive specifications?
 - Great and impressive progress, but a difficult problem!
 - With an honest, statistical assessment haven't yet achieved 30%/sqrt(E) goal. High energy jets now a principal challenge
 - The detailed interplay between optimization and technology choice does not lend itself to predictable progress.
- Should we revaluate resolution requirements?
 - Is the metric correct? Does it need to be so ambitious?
 - Some thought it should be a flat 3-4% rather than 30%/root(E)?
 - If still challenging, should we consider other innovations such as dual-readout?
 - If less challenging, would traditional calorimetry serve as a solid base? And, if so, can PFA-like algorithms "boost" performance as done at HERA & Tevatron?

Summary Steps Forward

- April, 2007: Technology Status/Reports
- June, 2007 (LCWS07): Extended Reports
 - GEM/RPC Slice Test
 - CALICE analysis and Scintillator/Tile Direct
 Coupling
- Late 2007:
 - PFA review and report
 - Completion 1st pass generic engineering study
 - Decision on next prototype step
- Mid 2008: Technology choice(s) CDR