RPC-DHCAL Progress Report

José Repond Argonne National Laboratory

SiD Workshop, FNAL, April 9 – 11, 2007

Staged approach

Vertical Slice Test

Uses the 40 DCAL ASICs from the 2nd prototype run

Equip ~10 chambers with 4 DCAL chips each

256 channels/chamber ~2500 channels total

Chambers interleaved with 20 mm copper - steel absorber plates

Electronic readout system (almost) identical to the one of the prototype section

Tests in MTBF beam planned for Spring 2007

- → Measure efficiency, pad multiplicity, rate capability of individual chambers
- → Measure hadronic showers and compare to simulation

Validate RPC approach to finely segmented calorimetry Validate concept of electronic readout

Responsibilities and collaborators

		\neg
Task	Responsible institutes	
RPC construction	Argonne, (IHEP Protvino)	$\frac{n}{R}$
Mechanical structure (slice test)	Argonne	
Mechanical structure (prototype section)	(DESY)	
Overall electronic design	Argonne	7
ASIC design and testing	FNAL, Argonne	
Front-end and Pad board design & testing	Argonne	大
Data concentrator design & testing	Argonne	-14
Data collector design & testing	Boston, Argonne	
Timing and trigger module design and testing	FNAL	
DAQ Software	Argonne, CALICE	
Data analysis software	Argonne, CALICE	
HV and gas system	lowa	ИФ
Beam telescope	UTA	7

RPC construction and testing

New design with simplified channels

1st chamber assembled and tested

→ Excellent performance
 Thickness ~3.5 mm (w/out pads)

2nd chamber assembled and tested

→ Excellent performance

3rd – 6th chamber being assembled

Material in hand for remaining chambers

Mechanical: Stack for Vertical Slice Test

Stack is assembled

Design accommodates 20 x 20 cm² RPCs as well as 30 x 30 cm² GEMs

Electronic Readout System for Prototype Section

40 layers à 1 m² \rightarrow 400,000 readout channels

More than all of DØ in Run I

- Front-end ASIC
- Pad and FE-board Ш
- Ш Data concentrator
- Super Concentrator IV
- VME data collection V
- Trigger and VI timing system

Some recent changes concerning role of data collector and timing/trigger module

DCAL chip

Design

- → chip specified by Argonne
- → designed by FNAL

1st version

- → extensively tested with computer controlled interface
- → all functions performed as expected

Redesign

- → decrease of gain by factor 20 (GEMs) or 100 (RPCs)
- → decoupling of clocks (readout and front-end)

2nd version

- → submitted on July 22nd
- → 40 chips (packaged) in hand

Test board

- → redesign of test board (changes in pin layout etc.) complete
- → boards fabricated
- → chip mounted on test board

Testing (1/40)

→ tests ~completed

Reads 64 pads

Has 1 adjustable threshold

Provides

Hit pattern

Time stamp (100 ns)

Operates in

External trigger or

Triggerless mode

DCAL2 Testing I: Internal pulser

Threshold scans...

All channels OK, except Channels #31/32 show some anomalies (understood, no problem)

DCAL2 Testing II: Internal pulser

Ratio of high to low gain

 $R = 4.6 \pm 0.2$

(roughly as expected)

DCAL2 Testing III: External pulser

DCAL2 Testing IV: external pulser

Chips can be used for vertical slice test Small modifications still necessary for production

Pad- and Front-end Boards I

New Concept

Split old 'Front-end board'

'front-end board' highly complex and difficult blind and buried vias + large board => (almost) impossible to manufacture split into two boards to eliminate buried vias

Pad boards

four-layer board containing pads and transfer lines can be sized as big as necessary relatively cheap and simple vias will be filled

Front-end boards

eight-layer board 16 x 16 cm² contain transfer lines, houses DCAL chips expensive and tough to design

Connections

board to board with conductive glue on each pad cables for connection to data concentrators

Pad board

Pad- and Front-end Boards II

Design completed

→ most intricate so far by Argonne group

Pad- and Front-end Boards III

Front-end board: fabricated and (partly) assembled Test-board (computer interface): fabricated and assembled Testing software: to be adapted from previous DCAL2 tests

Tests to start this week

Pad-board: design completed

Fabrication: received *reasonable* quotes

Waiting for OK from Front-end board

Gluing Tests

Performed test with test boards
Glued two boards to each other

→ strips of mylar for constant gap size

Resistance <~0.1 Ω Glue dots small (~2 mm) and regular Edges lifted off \rightarrow non-conductive epoxy

Data concentrator boards

Design completed
Boards fabricated
1/10 board assembled

Test board fabricated Will be assembled today...

Timing and trigger module

Provides clocks and trigger signals to individual DCOL boards

Schematic completed

Need 1 module for both the

Vertical Slice Test and the 1 m³ Prototype Section

Board layout starting today...

Data collector boards

Functionality

Receives data as packets

Timestamp (24 bits) + Address (16 bits) + Hit pattern (64 bits)

Groups packets in buffers (by matching timestamps)

Makes buffers available for VME transfer

Monitors registers (scalars)

Provides slow control of front-end

Allows read/write to DCAL chips or data concentrator boards

Need

1 unit for Vertical Slice Test7 units for Prototype Section

Test board purchased Testing software ready this week

Beam telescope, HV, and gas

Beam telescope

6 counters $(3 \times (1 \times 1 \text{ cm}^2) + 1 \times (4 \times 4 \text{ cm}^2) + 2 \times (19 \times 19 \text{ cm}^2)$ Mounted on rigid structure Counters and trigger logic tested \rightarrow A.White

HV modules

Need separate supplies for each chamber Modules (from FNAL pool) being tested

With additional RC-filter perform similarly to our Bertan unit in analog tests (RABBIT system) Digital tests satisfactory too

Gas system

Need manifold for 10 chambers (in hand!)
Will purchase pre-mixed gas (quote in hand)

Based on

VME hardware interface and PCI-VME interface CERN HAL library CALICE DAQ framework (→ combined data taking) ROOT running on CERN Linux OS

Two configurations

Vertical Slice Test with 10 x 4 ASICs or 2560 channels Prototype Section with 40 x 144 ASICs or 400k channels

Data archived for offline analysis

Contains: run metadata, hit patterns & addresses & timestamps
Configuration data stored in SQL database
Data will be converted to LCIO format

DAQ software will be used

For hardware debugging
In cosmic ray and charge injection tests
In FNAL test beam

Status

HAL based testing and debugging system running Toy version of CALICE DAQ running with *old* VME hardware

Next steps

Define operations for new hardware Define data structure (binary files) Define data structure (offline)

DAQ software

For Vertical Slice Test only

I Online histograms

Important in debugging phase Part of CALICE DAQ software DHCAL specific plots to be added

> Σ_{all}hit versus time Σhit versus chamber 2dhisto of chamber hits (all layers) 2dhisto of chambers hits (per layer) {Chamber efficiency and pad multiplicity}

II Analysis of binary files

Important in debugging phase Event display (to be adapted from CALICE-AHCAL) Track segment finder

III Conversion to LCIO

Standard for LC data bases Conversion to be done by CALICE expert (not urgent for VST, but necessary for later tests)

Programming will start soon...

Track Segment Finder

Loops over layers 1 - 8
Loops over hits in layer i
Determines #neighboring hits N_i
Searches for aligned hits in layer i+2,3,4,5
Determines #neighboring hits around aligned hit

$$N_{i+2}, N_{i+3}, N_{i+4}, N_{i+5}$$

($N_i = 0 ... no aligned hits)$

Looks for aligned hits in layer i+1 Determines #neighboring hits N_{i+1}

Efficiency of layer i+1

$$N_{i+1}>0.and.N_{i+2}>0(.and.N_{i+3}>0)$$

$$N_{i+2} > 0(.and.N_{i+3} > 0)$$

Pad multiplicity of layer i+1

$$N_{i+1}$$
, for $N_i=1$.and. $N_{i+2}=1$ (.and. $N_{i+3}=1$)

Component	February	March	April		April May		June
ASIC	Complete testing Provide new packing scheme Order 40 additional				Test		Move to MT6 Test in test beam
Gluing	Test with regular epoxy	Test with conductive epoxy	Develop gluing procedure Test with real boards Glue all boards				
Pad boards	Specify dimensions Complete design		Order for RPCs				
Front-end boards	Complete design Order 15	Fabricate Assemble	Test	Test			
Interface board (to test FE-boards + ASIC)	Complete design	Fabricate Assemble					
Data concentrator		Complete design Fabricate Assemble	Test	V	ersior	from	4/9/2007
Data concentrator test board		Complete design Fabricate Assemble					
Data collector	Complete design Acquire crates	Fabricate Assemble	Test				
Data collector test board		Acquire Write software					
Timing & trigger module	Discuss with FNAL	Design	Fabricate Assemble Test				
Software	Acquire PC	Complete standalone development (with 'old' VME card)	Complete development with DCOL				
RPCs	Complete #1	Test #1 Test #2	Buil#3-6 Test #3-6		Build #7-10 Test		
Offline	Propose concept	Develop plan	Write software				

Comparisons...

Identical

	VST	PS	ILCD
RPCs	20 x 20 cm ²	32 x 96 cm ²	Variable
DCAL chips	64 inputs No power pulsing	64 inputs No power pulsing	> 64 inputs???
Front-end boards	4 ASICs/board No optimization in thickness/cost	4 ASICs/board No optimization in thickness	>4 ASICs/board Token rings?
Pad boards	16 x 16 cm ²	32 x 48 cm ²	Variable
Data concentrator	Input = 4 ASICs	Input = 12 ASICs	?
Super concentrator	Not used	Input = 6 Data concentrator	?
Data collector	12 inputs	12 inputs	?
Timing module	1 unit	1 unit	?
HV	1/chamber	1/3 chambers	?
Gas lines	1/chamber	1/3 chambers?	?

Conservative design

Some optimization

Highly optimized

Conclusions

Going full speed!!!

- Vertical slice test

Concentrated effort with monthly meetings (whole effort)

weekly meetings (ANL group)

All parts coming together (no apparent late comer)

Goal Cosmic ray test sin May 2007

Measurements in test beam in June 2007

- Prototype section

Expensive! (New revised cost estimate soon)

Funding appears possible

Goal → RPC stack in 2008

Backup Slides

DAQ software

Particular challenge to be compatible with CALICE software

Funding

LCRD funds for 2006

RPCs (ANL, Boston, Chicago, Iowa) \$98k GEMs (UTA, Washington) \$60k

Supplemental LCRD funds for 2006/7

Available funds

\$1,200k/year?

Submitted pre-proposal for RPC/GEM DHCAL

Requested \$1,200k for 2006

~\$800k for 2007

2006 build RPC-DHCAL

continue R&D on GEMs

2007 test RPC-DHCAL at MTBF

build GEM stack

2008 test GEM-stack

DOE asked us to submit proposal for \$500k/year (done)

Costs and Funding

- A) Slice test is funded by LCDRD06, LDRD06 and ANL-HEP, and Fermilab funds
- B) Prototype section not yet funded, but...

Stack	Item	Cost	Contingency	Total
RPC stack	M&S	607,200	194,600	801,800
	Labor	243,075	99,625	342,700
	Total	850,275	294,225	1,144,500
GEM stack*	M&S	400,000	165,000	565,000
* Reusing most	Labor	280,460	40,700	321,160
of the RPC electronics	Total	680,460	205,700	886,160
Both stacks	M&S	1007,200	359,600	1366,800
	Labor	523,535	140,325	663,860
	Total	1,530,735	499,925	2,030,660

Proposal for supplemental funds for \$500k/year over two years submitted to DOE Help from ANL (LDRD), ANL-HEP, FNAL expected...