PFA update

Lei Xia ANL-HEP

PFA outline Tracker Hits Calorimeter Hits Clustering Track finding Algorithm Algorithm Calorimeter Clusters Reconstructed Tracks Photon Identification **Hadron Clusters EM Clusters** Track-cluster matching 'Neutral' Clusters Matched Clusters Charge fragment identification E/p check **Neutral Clusters** Fragments EM sampling Hadron sampling fraction fraction Total event + ÷ energy

SiD workshop, 04/09-11, 2007

Work of the last several month: improving PFA at Z-pole

- Since last SiD workshop (10.2006, SLAC), have done the following:
 - Tuned clustering algorithm
 - ECal density threshold: 0.01
 - HCal density threshold: 0.01
 - Improved PFA result
 - Tuned h-matrix cut, and studied track-cluster matching strategy for 'photon' clusters
 - No change in PFA result
 - Used a tighter 'track' selection from MC charged particles
 - No change in PFA result
 - Tuned E/p correction threshold
 - Correct grouping of matched track(s) and cluster(s)
 - Use calorimeter energy, if > 2.5sigma in excess of cluster energy observed, comparing to matched track momenta
 - Improved PFA result
- Results reported at SiD calorimeter meeting (11/30/2006)

Work of the last several month: improving PFA at Z-pole

- Recent changes
 - Changed track extrapolation package
 - Helixswim (deprecated in org.lcsim) → Helixswimmer
 - Same PFA result obtained with Helixswimmer
 - Implemented a simple mechanism to include an average energy lost in track extrapolation, within tracking volume and calorimeter volume
 - No effect on PFA
 - Tuned track extrapolation parameters
 - Sample point density
 - Track extrapolation length as a function of track momentum
 - No change in PFA result
 - Tuned fragment identification cuts
 - Small improvement on PFA
 - Improved E/p correction
 - Removed cluster energy requirement (since it doesn't really do anything)
 - Tuned track momentum requirement
 - Changed threshold (4 GeV, was 2.5 sigma)
 - Some improvement on PFA

Current PFA performance at Z-pole: sidaug05_np

All events, no cut

Barrel events (cos(theta[Q]) < 1/sqrt(2))

Mean 88.83 GeV RMS 5.774 GeV RMS90 3.638 GeV [38.5 %/sqrt(E)] Mean 89.52 GeV RMS 4.693 GeV RMS90 3.320 GeV [35.1 %/sqrt(E)]

Progress on PFA at Z-pole

Barrel events

All events

ALCPG Vancouver workshop (7/2006)

46. %/sqrt(E)

49. %/sqrt(E)

Last SiD workshop (10/2006, SLAC)

38.2 %/sqrt(E)

41.6 %/sqrt(E)

SiD calorimeter meeting (11/2006)

35.9 %/sqrt(E)

39.1 %/sqrt(E)

This workshop (4/2007, Fermilab)

35.1 %/sqrt(E)

38.5 %/sqrt(E)

- Compare to
 - LDC (PendoraPFA)

30. %/sqrt(E)

– GLD

29.8 %/sqrt(E)

SiD workshop, 04/09-11, 2007

Using Z-pole tuned PFA at higher energies

Barrel events 200 GeV 350-360 GeV 500 GeV SiD calorimeter meeting (10/2006) 132. %/sgrt(E) 201. %/sqrt(E) Last SiD workshop (10/2006, SLAC) 77. %/sqrt(E) 140. %/sqrt(E) SiD calorimeter meeting (11/2006) 66.7 %/sqrt(E) 127. %/sqrt(E) This workshop (4/2007, Fermilab) ? %/sqrt(E) ? %/sqrt(E) Compare to LDC (PendoraPFA) 37. %/sqrt(E) 57. %/sqrt(E) 75. %/sqrt(E) — GLD ~45 %/sqrt(E) ~68 %/sqrt(E) ~85 %/sgrt(E)

SiD workshop, 04/09-11, 2007

Plan

Almost done

Started
Currently working on re-writing
the clustering algorithm
Will get it done ASAP

PFA development at Z-pole will hopefully stop here

Shower leakage: di-jet at 200 GeV

Shower leakage: di-jet at 500 GeV

- Shower leakage affect PFA performance at high energy
- Events with heavy shower leakage could be identified by hits in the muon detectors
- Use hits in the muon detectors to estimate shower leakage?

Summary

- Some progress on PFA performance
- Started re-writing my PFA according to template convention
- Some algorithms will be revisited after the re-writing PFA at Z-pole will be done by that time (hopefully with good performance)
- Will try to improve PFA performance at higher energy after Z-pole is done

Shower leakage could be a problem at high energy