#### **Update on BC Alignment**

A.Latina

ILC Accelerator Physics Meeting - February 26, 2007

- Case 1 : BC1 used to align BC2

- Case 2 : alignment of the BC at once

 $\Rightarrow$  Misalignment model: "COLD"

| $\sigma_{ m quad}$          | = | $300 \ \mu m$            |
|-----------------------------|---|--------------------------|
| $\sigma_{ m quad\ roll}$    | = | $300 \ \mu \mathrm{rad}$ |
| $\sigma_{ m cav}$           | = | $300 \ \mu m$            |
| $\sigma_{ m cav}$ angle     | = | $300 \ \mu rad$          |
| $\sigma_{ m sbend \ angle}$ | = | $300 \ \mu rad$          |
| $\sigma_{ m bpm}$           | = | $300 \ \mu m$            |

quadrupole position error quadrupole roll error cavity position error cavity angle error sbend angle error bpm position error

 $\Rightarrow$  BPM resolution :  $\sigma_{\rm bpm \ res} = 1 \ \mu m$ 

 $\Rightarrow$  Wakefields of the cavities are taken into account

#### CASE 1: BC1 used to align BC2

- A perfectly aligned BC1 is used to generate the test beams for DFS in BC2
  - an offset of few degrees in the RF phase of the BC1 accelerating structures, leads to an energy difference at the entrance of BC2
  - bunch energy as a function of the RF phase offset

| $\Delta \phi = +2^o$    | $\Rightarrow$ | 99.5908% | $E_0$ |
|-------------------------|---------------|----------|-------|
| $\Delta \phi = +5^o$    | $\Rightarrow$ | 98.9878% | $E_0$ |
| $\Delta \phi = +10^{o}$ | $\Rightarrow$ | 98.0158% | $E_0$ |

| $\Delta \phi = -2^o$  | $\Rightarrow$ | 100.414% | $E_0$ |
|-----------------------|---------------|----------|-------|
| $\Delta \phi = -5^o$  | $\Rightarrow$ | 101.045% | $E_0$ |
| $\Delta \phi = -10^o$ | $\Rightarrow$ | 102.114% | $E_0$ |

 $\Rightarrow \phi_0 = 110 \deg$ 

 $\Rightarrow \mathsf{E}_0 \simeq 4.79 \; \mathsf{GeV}$ 

# **CASE** 1: alignment strategy

- 1. 1-to-1 correction
- 2. Dispersion Free Steering using two test beams,  $\pm \Delta \phi$
- 3. Dispersion bumps optimizations
  - using two artificial dispersion bumps (entrance, exit)
  - using the skew quadrupoles in BC2

 $\Rightarrow$  Final emittance growth after DFS and DISPERSION BUMPS (2x) optimization

 $\Delta \phi = \pm 10^o \Rightarrow 1.7 \text{ nm}$ 

 $\Rightarrow$  Final emittance growth after DFS and SKEW quad optimization

$$\begin{array}{lll} \Delta\phi=\pm2^o &\Rightarrow& {\rm 3.7~nm}\\ \Delta\phi=\pm5^o &\Rightarrow& {\rm 2.0~nm}\\ \Delta\phi=\pm10^o &\Rightarrow& {\rm 1.5~nm} \end{array}$$

All results are average of 50 machines



Δε [nm]

# **CASE 2:** alignment of BC1 and BC2 at once

- the BC is aligned at once : the phase offset is applied to all cavities
- ...using DFS and SKEW quad optimization
  - the RF phase of all accelerating structures is offset by few degrees
    - $\Rightarrow$  thus the bunches gain different acceleration  $\Rightarrow$  this can be exploited by DFS
    - $\Rightarrow$  the energy difference grows along the BC (efficacy of DFS grows along the lattice)
  - all 4 pairs of SKEW quadrupoles are used for dispersion reduction

 $\Rightarrow$  Final emittance growth after DFS and SKEW quad optimization

| $\Delta \phi = \pm 2^o$  | $\Rightarrow$ | 3.12 nm |
|--------------------------|---------------|---------|
| $\Delta\phi=\pm5^o$      | $\Rightarrow$ | 2.79 nm |
| $\Delta \phi = \pm 10^o$ | $\Rightarrow$ | 2.68 nm |

All results are average of 50 machines

ILC BC Alignment: BPM<sub>res</sub>=1µm, 50 machines



Δε [nm]

ILC BC Alignment:  $\Delta \phi = 2^{\circ}$ , 50 machines



Δε [nm]

## Conclusions

- all misalignment were taken into account, and wakefields of the cavities as well
- we used a *pessimistic* scenario :
  - we assumed "COLD" misalignments for all elements, whereas the majority of them are in the "WARM" areas (150  $\mu$ m misalignment instead of 300)
  - our BPMs were not "attached" to the QUADRUPOLEs

- Best final emittance growth is :
  - 1.5 nm, after aligning the BC2 using the BC1 (assuming a perfect BC1)
  - 2.68 nm, after aligning the whole BC