

Emittance Studies in the 2006 Bunch Compressor

PT SLAC

26 Feb 2007 Beam Dynamics Meeting

Global Design Effort

1

- At the Daresbury meeting, K. Kubo presented some results for tuning studies of the 2006 Bunch Compressor (BC)
 - Quite interesting and scary results on quad misalignments and cavity pitches
- I performed similar studies to try and confirm his results
- In general I found that emittances were better than in K. Kubo's study

- Skew quads in each wiggler for dispersion control
- Emittance station after BC2
- Different RF / wiggler configuration than in 2007 design
 - Had to redesign because of 9 mm bunch out of DR

KM Steering

- Simultaneously minimize RMS BPM readings, and BPM readings corrector strengths
- Requires BPM-to-quad offsets be reasonably small
- Assumed 7 um RMS
 - Was used in previous study
 - Estimate of accuracy of quad-shunting technique from FFTB experience
- Weighting:
 - Increase χ^2 by 1 for each BPM with a 150 um residual absolute orbit
 - 150 um RMS alignments of quads to survey line assumed
 - Increase χ^2 by 1 for each BPM with a 7 um residual orbit when corrector strength subtracted
- Iterating
 - Did 3 iterations
 - Probably overkill don't think it improved results compared to 2 iterations
- Assumed perfect BPM resolution
 - This technique is not generally limited by BPM resolution

Bump optimization

- 2 pairs of skew quads in BC1, 2 pairs in BC2
- Tune by scanning knob strength, measuring σ^2 on appropriate wire scanner, fitting parabola, accepting best value
 - Also some fancy logic for handling case when minimum is outside scan range
- Looked at response of wires to each pair of skew quads
 - BC1: All 4 wires respond ~equally to each knob
 - Tune knob 1 using beam size on wire 4
 - Tune knob 2 using beam size on wire 2
 - BC2: found that phase advance from knobs to wires not optimal
 - Make a linear combination of 2 knobs, with "mixing angle" of 15° -- makes 1 wire completely non-responsive to each of the 2 knobs
 - Tune knob 1 using beam size on wire 1
 - Tune knob 2 using beam size on wire 3
- No wire resolution limit used (ie, wires are perfect)
- Did 2 studies

ĪĪĹ

- Using BC1 knobs only
 - Original study used only BC1 knobs
- Using BC1 and BC2 knobs
 - 1 iteration of knobs only

Distribution of Results – Quad and BPM misalignments, KM + BC1 Knobs, 100 seeds

Distribution of Results – Quad and BPM misalignments, KM + BC1+ BC2 Knobs, 100 seeds

26 Feb 2007 Beam Dynamics Meeting

_Δγε_y [nm]

26 Feb 2007 Beam Dynamics Meeting

Distribution of Results – Quad + BPM misalignments, cavity pitches, KM + BC1 + BC2 Knobs, 100 seeds

Normal mode emittance 25 mean = 3.15 nm20 90% CL = 6.30 nm 15 10 5 12 2 6 8 10 14 4 Π Δγε_ν [nm]

26 Feb 2007 Beam Dynamics Meeting

Summary of Results

Quad Offset (μm)	BPM Offset (μm)	Cavity Pitch (µrad)	Knobs	Mean growth (nm)		90% CL Growth (nm)	
<u>v</u> ,	0.7	Q Z		Old	Ńew	Old	New
150	7	0	None	6.8	3.6	15.1	7.1
150	7	0	BC1	2.1	1.5	4.7	3.3
150	7	0	All	-	1.2	-	2.4
150	7	300	BC1	9.2	4.9	17.6	9.5
150	7	300	All	,	3.9		7.5

Note: All emittance growths here are projected emittances!

- Emittance growths found in this study were generally smaller than in K. Kubo's study
 - Including the use of KM steering to correct quad misalignments
- BC2 knobs seem to somewhat improve projected emittance growth
 - But make the normal-mode growth somewhat worse
- Emittance growths are still larger than expected and larger than budget
- These effects will be worse in 2007 design
 Larger longitudinal emittance out of DR

- Why do the two studies disagree?
- Why aren't the knobs more effective?
 - On quad misalignments in turnaround, KM steering + knobs is almost perfect
- Why does the normal-mode emittance increase when BC2 knobs are used?
- Are we using the correct parameters?
 - Could fit a Gaussian to the beam projection at the wire instead of looking at RMS
 - Could compute emittance from the fitted Gaussians at 4 wires instead of looking at emittance from beam matrix

Questions / Comments

"What can I do? All I want is to get next to you!"

-The Police, "Next to You"

26 Feb 2007 Beam Dynamics Meeting