
Bunch Compressor KM steering. dispersion bump simulation

- Vertical emittance dilution After Daresbury meeting

> Kiyoshi Kubo 2007.02.26

- Simulation reported at Daresbury meeting
 - KM steering + Dispersion bump correction
 - a pair of bumps in BC1
- What was done after Daresbury meeting (comments from PT)
 - Simulation with an additional set of dispersion bumps after BC2 cavities.
 - As follows, the result was not much improved.
 - Minimize beam size at one most sensitive wire scanner for each bump, instead of minimizing measured projected emittance
 - Results are not shown here. See summary.

ILC Bunch Compressor, calc. by SAD, xsif -> SAD Translated by S.Pei (IHEP)

All simulations used SAD. Tracking of macro-particles.

Simulated cases

Quad offset (µm)	BPM- Quad offset (μm)	Cavity pitch (µrad)	Beam size resolution (μm)	Correction
150	7	300	-	KM
150	7	300	0	KM+BC1bump
150	7	300	0.2	KM+BC1bump
150	7	300	0	KM+BC1bump+ BC2bump
150	7	300	0.2	KM+BC1bump+ BC2bump

Kick Minimization (same as before)

Quad magnet, BPM and steering magnets should be attached.

-

Minimize
$$r\sum_{i} (x_i^2 + y_i^2) + \sum_{i} [(\theta_{x,i} + k_i x_i)^2 + (\theta_{y,i} - k_i y_i)^2],$$

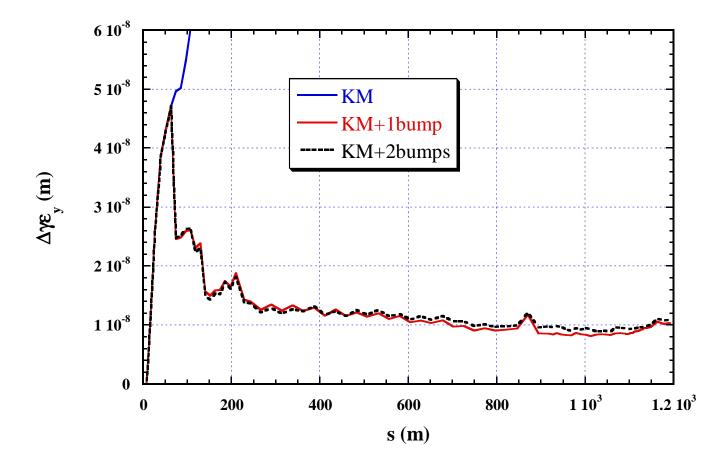
 $\theta_{x(y)i}$: Additional kick angle (additional to designed kick)
of steering at *i* - th quad
 $x(y)_i$: Offset from designed orbit at *i* - th quad
 k_i : K - value (inverse of focal length) of the *i* - th quad
 r : Weight ratio: (Quad - BPM offset)²/(Quad offset)²

Dispersion bumps

Knobs

- 4 skew quads at the beginning of BC1 wiggler section
- (a) Set opposite strength of a pair of skew quads, -I between them.
- (b) Set opposite strength of another pair of skew quads, -I between them. 90 degree phase difference from the first pair.
- Knob 1: (a) + (b)
- Knob 2: (a) (b)

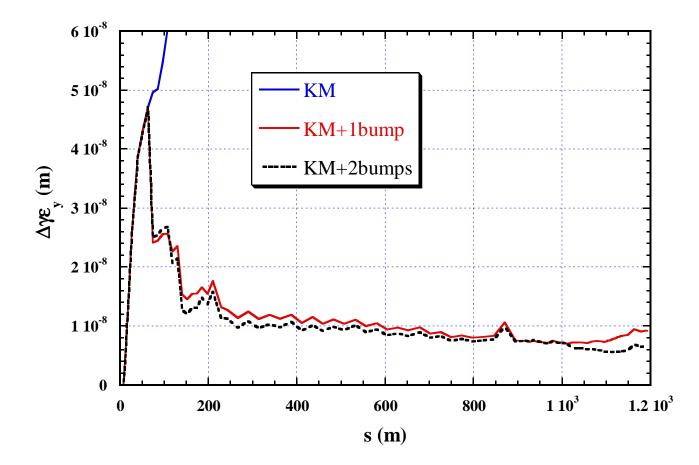
Monitors


- Near the end of the beam line
 - Use three laser wire monitors (beam size monitors)
 - Minimize projected emittance calculated from beam sizes at three locations.

Add another pair of dispersion knobs using 4 skew quads at the beginning of BC2 wiggler section. Same monitors are used.

Quad offset + Cavity Pitch - KM + bump

Quad offset 150 um, BPM-Quad offset 7 um, Cavity pitch 300 urad, Beam size resolution 0.2 um


Vertical emittance increase (average of 100 seeds) vs. s

Quad offset + Cavity Pitch - KM + bump

Quad offset 150 um, BPM-Quad offset 7 um, Cavity pitch 300 urad, Beam size resolution 0

Vertical emittance increase (average of 100 seeds) vs. s

Summary of simulation results

Quad offset 150 um, BPM-Quad offset 7 um, Cavity pitch 300 urad

Beam size	Correction	Δ γε _y (nm)
resolution (µm)		(average 100 seeds)
-	KM	126.
0	KM+BC1bump	9.1
0	KM+BC1bump+BC2bump	6.6
0	KM+BC1bump+BC2bump*	7.4
0.2	KM+BC1bump	10.3
0.2	KM+BC1bump+BC2bump	10.8
0.2	KM+BC1bump+BC2bump*	9.9

* Minimizing beam size at most sensitive wire scanner.

Summary

No significant improvement.

- Simulation with an additional set of dispersion bumps after BC2 cavities.
 - Reduce $<\Delta\gamma\epsilon_y>$ from 9 nm to 7 nm with perfect monitors (still not satisfactory)
 - But no improvement with beam size resolution 0.2 um.
- Minimize beam size at one most sensitive wire scanner for each bump, instead of minimizing measured projected emittance
 - This mitigate effect of error of beam size measurement, only a little. Reduce $<\Delta\gamma\epsilon_y>$ from 11 nm to 10 nm with 0.2 um resolution