ILC High Availability (HA) Electronics R&D

Prepared for Institute for High Energy Physics Electronics Department Beijing, PRC February 2, 2007 by Ray Larsen Electronics Division Stanford Linear Accelerator Center For the ILC Collaboration

Outline

- I. Why High Availability & Why Now?
- II. Controls & Instrumentation Standards
- III. Power Systems Architectures
- IV. Summary of R&D Programs
- V. Conclusions

I. Why HA and Why Now?

• Overarching Goal of HA Design:

"Design and build systems that do not interrupt machine operation when components fail."

- Computer Modeling[1] demonstrates that ILC will only run ~20% of the time unless all systems designed for High Availability.
- ILC has adopted HA design principles to evaluate all systems, subsystems & components.
- Strong investment needed in hardware and software R&D over next several years to design, implement effective HA at modest incremental cost.

[1] <u>AvailSim</u>, Ref. T. Himel, SLAC. See US Linear Collider Technology Options Study, USLC Steering Group, March 4, 2004,. Chapter 4: Availability Design.

February 2, 2007

I. Availability Defined

• Availability: Fraction of time machine/system is in "full production mode," i.e. delivering design luminosity to user¹.

$A=MTBF/(MTBF+MTTR) \leq 1$

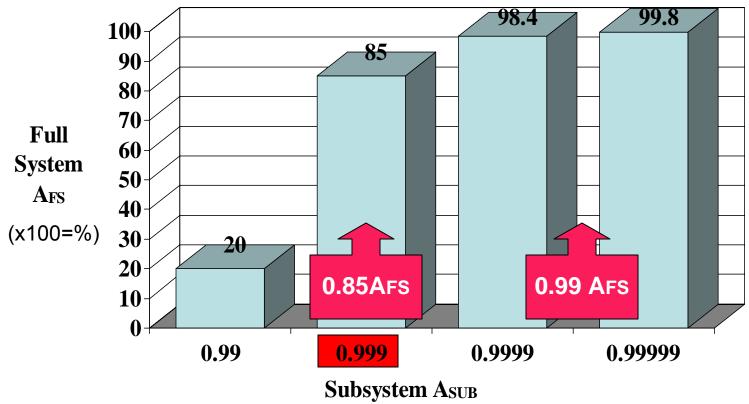
- MTBF = Mean Time Before Failure (Reliability)
- MTTR = Mean Time To Repair
- Note: If MTTR \rightarrow 0, A \rightarrow 1 regardless of *Reliability*

¹ Most Machine Availability statistics do not account for times of degraded luminosity or time lost in getting from zero to full luminosity, which are significant.

February 2, 2007

I. High Availability Design

- A \rightarrow 1 Achieved by 3 simple means:
 - 1. Modular Design at sub-unit level
 - -2. Redundancy at unit level (typically N+1)
 - 3. Hot swappable design if loss of sub-unit or unit brings down machine, or
 - Extra redundancy at system level where failed unit critical and can automatically switch in spare, e.g., RF station.


I. Setting the ILC Availability Goal

- Assume 16 Systems each w/10 Subsystems
 - 1. Beamlines
 - 2. Modulators
 - 3. Klystrons
 - 4. LLRF
 - 5. Instrumentation
 - 6. Control System
 - 7. Vacuum
 - 8. Cryogenics
 - 9. AC Power
 - 10. Water and A/C

LC Americas Region

I. Required Subsystem Availability ASUB for Full System AFS >0.85 = 0.999 Avg

Comprising 16 Systems, 10 Subsystems each System

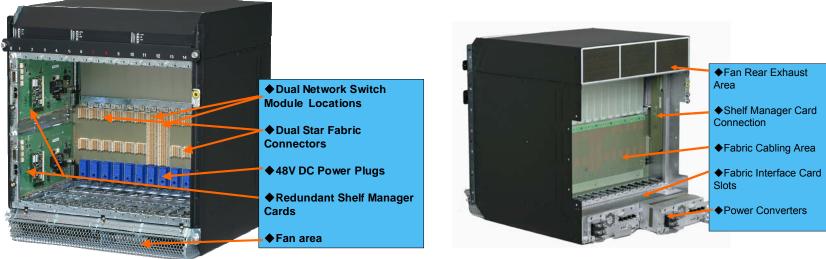
Ref: Larsen & Downing, 2004 IEEE NSS, Rome

February 2, 2007

II. Controls & Instrumentation

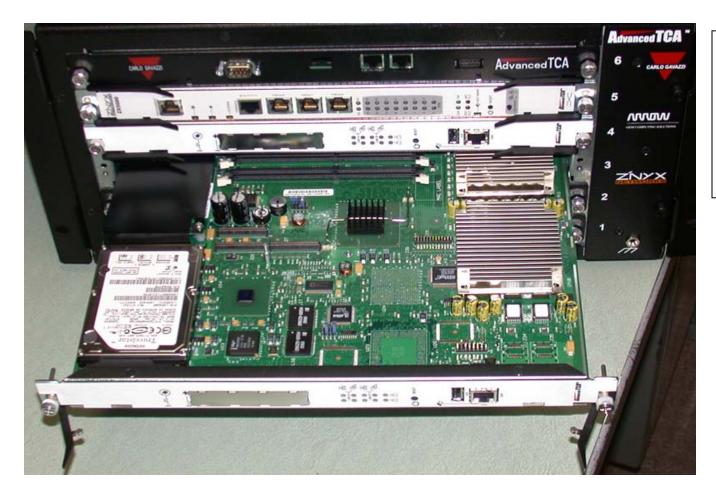
- Baseline Controls & Instrumentation Platform
 - Advanced Telecom Computing Architecture (ATCA)
 - 2004 Telecom Industry Open Standard
 - Designed for "five nine's" 0.99999 Availability
- Topics
 - ATCA "5-nines" Shelf (Crate) Platform
 - Boards and Mezzanine Boards
 - Power & Fabric Connectors
 - Controls & Instrument Architecture
 - Board Level Power Systems

Americas Region


II. 2004: Introduction of ATCA*

Telecom Industry Open Standard

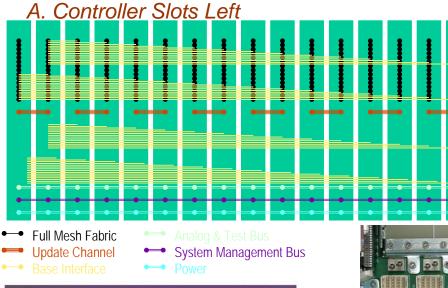
Driven by \$10B/year server and switching market

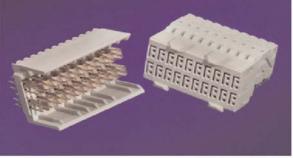

- ■A=0.99999 = Downtime of 5 minutes/year
- All Gigabit serial Dual Star or Mesh backplane
- Dual controllers, 48V PS, hot swappable,
- 200W/module air cooled, 3+1 Fans hot swappable
- Shelf Manager controls failover, power metering, hot swap

*Advanced Telecom Computing Architecture Courtesy PICMG-ATCA 9

February 2, 2007

II.5-Slot Crate (Shelf) Starter Kit


2 Processor Blades, 1 Fabric Switch 3.125 Gb/s, Shelf Manager (Inside box, not shown)


-Arrow Electronics

February 2, 2007

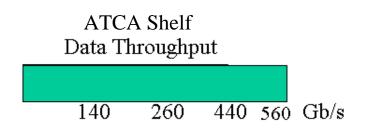
AdvancedTCA Backplane Routing Dual/Dual Star

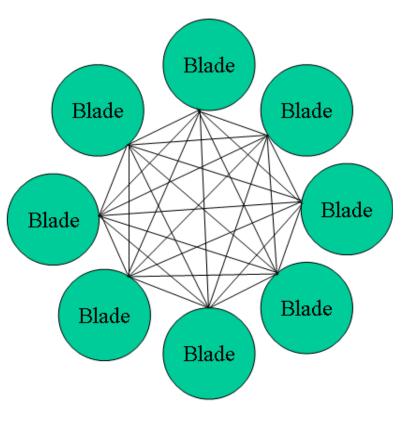
20 Pair Header and Receptacle

- Data Fabric, Update Channel, and Timing Clocks
- Up to 3.125Ghz clock rates
- · Pins protected by ground shield from bending
- Up to 5 connectors can be used on a backplane per slot

February 2, 2007

II. Dual Star Backplane & Fabric Connector

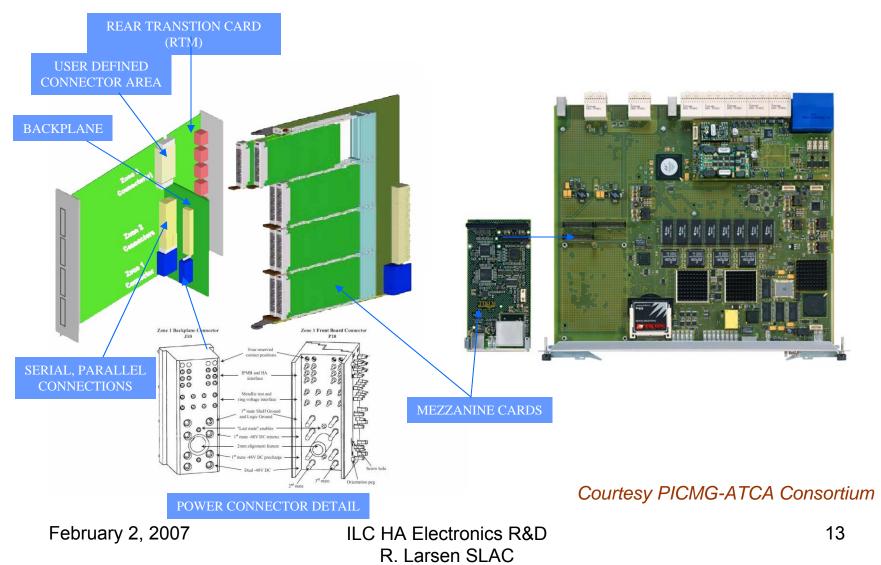

B. Controller Slots Center

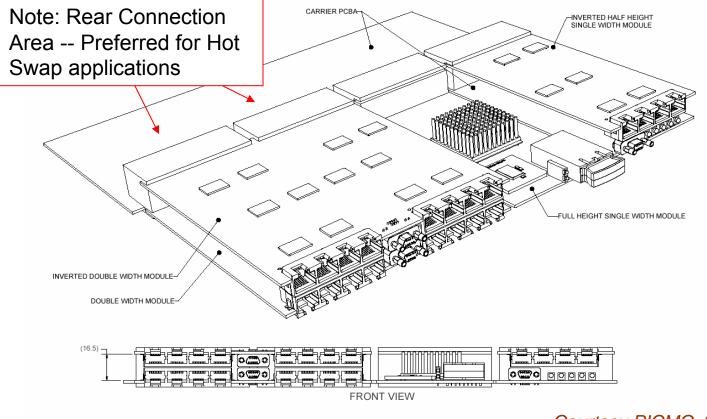


ILC HA Electronics R&D R. Larsen SLAC Courtesy PICMG-ATCA Consortium 11

II. ATCA Topology Options

- PICMG 3.0 supports multiple topologies
 - Star (140 Gb/sec in 8 slots)
 - Dual Star (280 Gb/sec)
 - Full Mesh (560 Gb/sec in 8 slots)
- A 14 slot ATCA shelf could support data rates to 2.1Tb/s




Courtesy PICMG-ATCA Consortium

February 2, 2007

II. ATCA Card Options

II. ATCA Carrier & Mezzanine Cards

Courtesy PICMG-ATCA Consortium

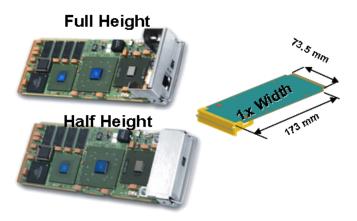
February 2, 2007

ILC HA Electronics R&D R. Larsen SLAC

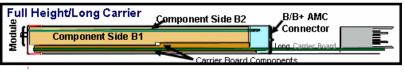
14

LC Americas Region

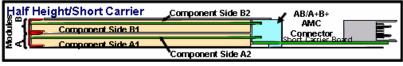
II. Advanced Mezzanine Card


Full Height & Half Height

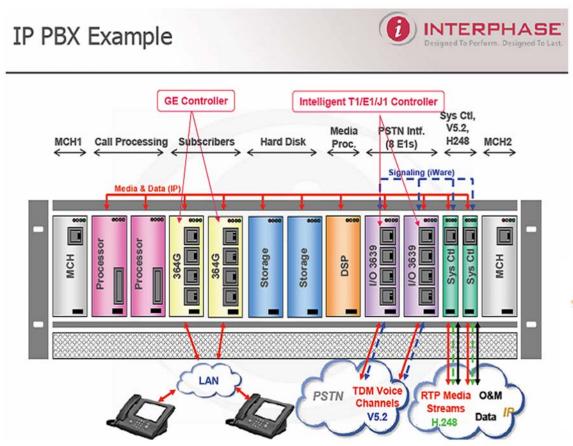
- What's an AMC?
 - A next generation mezzanine standard optimized for ATCA and high-speed interconnects such as PCI Express and Advanced Switching
- · What's it good for?
 - Design simplification
 - Reduced board complexity
 - Increased throughput
 - 21 duplex ports @ up to 12.5 Gbits/s each
 - Designed to also enable SPI-4.2
 - Increases high availability with IPMB and Hot Swap
 - Modularity increases system density and improves TTM (due to less baseboard redesign)


IPBM=Intelligent Platform Management Board TTM = Time To Market

February 2, 2007


ILC HA Electronics R&D R. Larsen SLAC

Photos Courtesy of Artesyn Technologies


Note: Half Height Modules can go into Full Height Connectors

Courtesy PICMG-ATCA Consortium

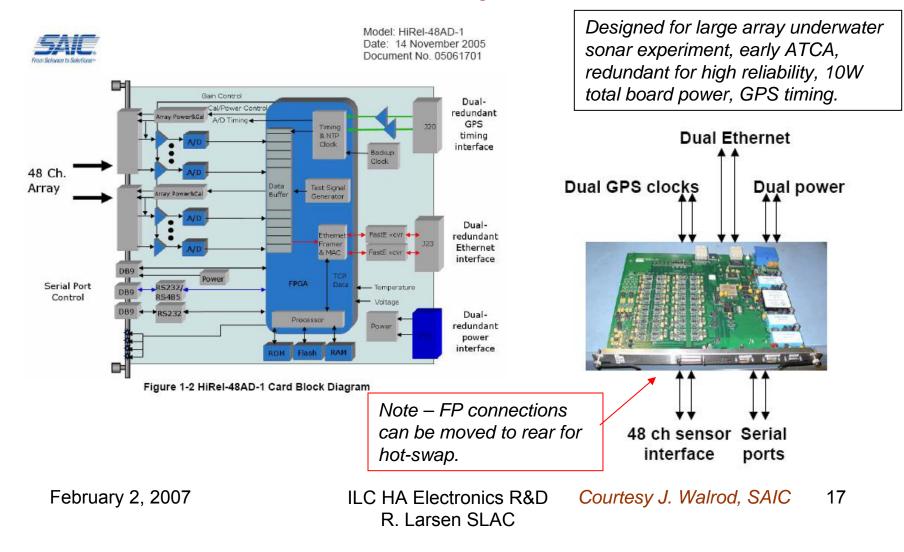
15

II. MicroTCA Chassis

MicroTCA

Platform designed for standard Mezzanine cards in separate low profile package. Current design is NOT rear-only connection.

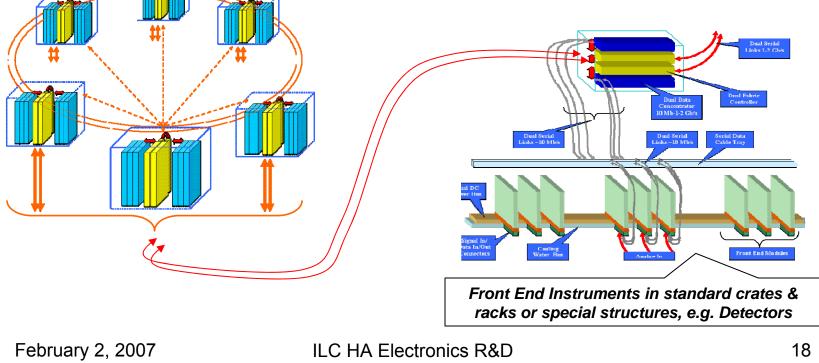
Courtesy Interphase Corp.

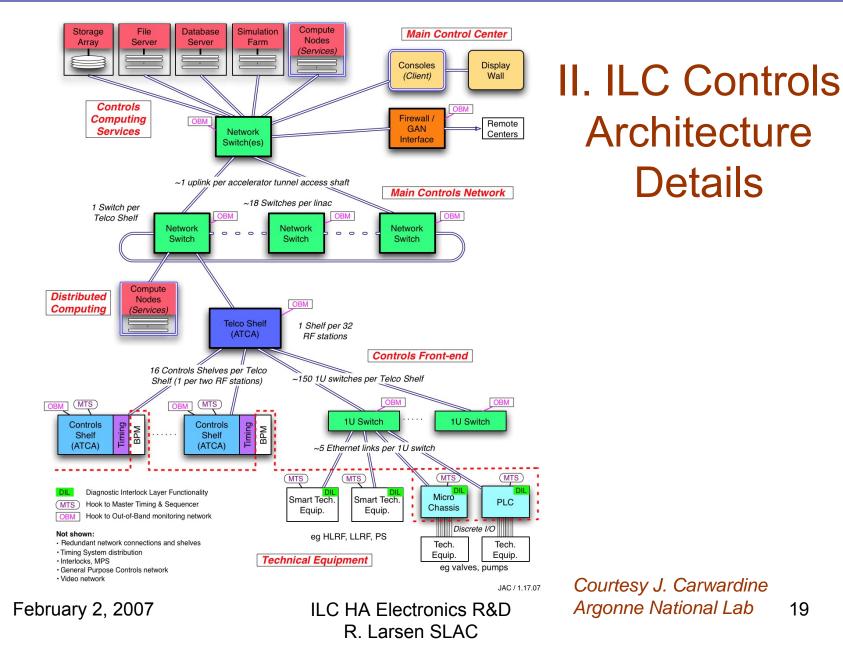

February 2, 2007

ILC HA Electronics R&D R. Larsen SLAC

16

Americas Region I L C International Linear Collider

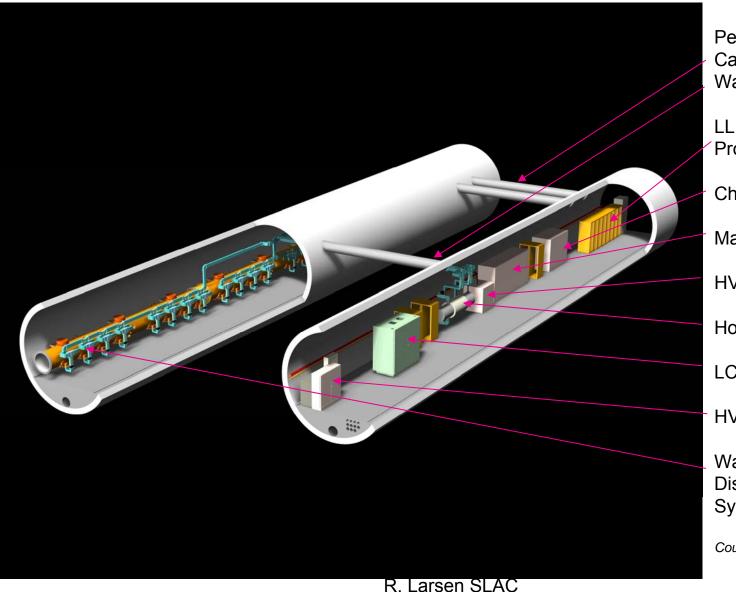

II. Commercial DAQ Instruments Example


II. Proposed ILC Applications

- Controls Backbone
- Main Control

- Remote Sector Nodes
- Front End Instruments

Americas Region


III. Power Systems Architectures

- 1. Crate & Card-Level Power Systems
- 2. DC Magnet Constant Current Power Supplies
- 3. Marx Klystron Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer

III. Main Linac RF Power

- Dominate electronic systems costs:
 - ~650 10 MW 1.3 GHz RF Stations (modulators, klystrons, waveguide distribution)
 - ~5000 equipment racks for LLRF, BPM, magnet supplies, vacuum, tuners etc
 - ~1,500 ATCA crates.
- Main limitation to availability:
 - RF power, DC power systems

ILC Americas Region ILC Baseline: 38m 10 MW Linac RF Station

Penetrations: Cable & Plumbing Waveguide

LLRF, Controls, Protection Racks

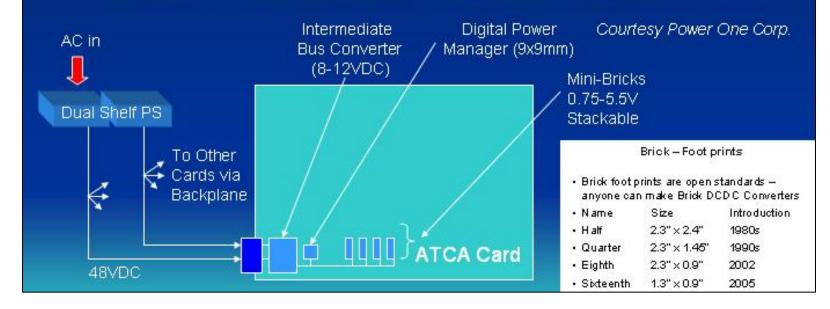
Charger

Main Modulator HV Pulse Transformer Horizontal Klystron LCW Chiller for Racks HV Supply Switchgear

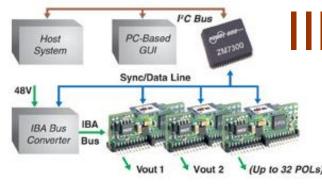
Waveguide Distribution System

Courtesy: J. Liebfritz, FNAL 22

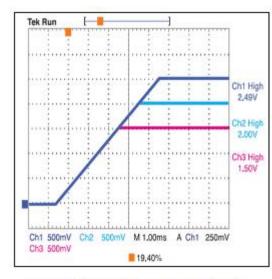
III. Power Systems Architectures


- 1. Crate & Card-Level Power Systems
- 2. DC Magnet Constant Current Power Supplies
- 3. Marx Klystron Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer

LC Americas Region

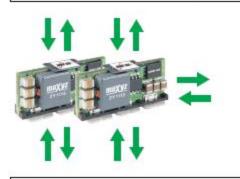

III-1. Card Level Power Systems

Commercial Solutions from Telecom Industry


- New processors/logic IC's demand voltages to 0.75V at currents to 100A
- Drivers need to be very close to load (POL's, Point-of-Load)
- Convert 48VDV on-board using industry standard stackable "bricks"
- Standard pinouts, multiple suppliers
- Power chip sets include intelligent controllers to set up, monitor sequencing, V and I levels, report faults, isolate faulty units.

Americas Region

Z-One[®] Digital Power is a multi-source open-architecture power solution that optionally utilizes an industrystandard I²C interface.


<u>No-Bus™ Z-1000 POLs feature guaranteed</u> <u>tracking between multiple outputs</u>

February 2, 2007

III-1. Power Converters*

Output Voltages and Currents

- Output voltages (0.5 to 5.5V) and turn-on delays are configured with an external resistor and a capacitor, respectively.
- Up to ten Z-1000 POLs can current share using a single control trace.
- Z-1000 POLs can start up with pre-biased outputs.
- Sink and source current capabilities for active bus termination.

Signals and Protections

- Reporting of output current and temperature via signal pins.
- Thresholds for overvoltage, undervoltage, and Power Good track the output voltage settings.

25

Coordination and Optimization via Simple Pin Strapping

- Frequency synchronization and phase interleaving reduce EMI.
- Comprehensive sequencing and cascading management.
- Feedback loop compensation and enable logic.
- Frequency synchronization, fault propagation, and current sharing are implemented, without external components, by interconnecting the respective pins on the Z-POLs being coordinated.

*Courtesy Power-One Corp.

LC Americas Region

III-1. Intelligent Power Application - Beijing*


Xinwei Configures Z-One[®] Digital Power for "Big Smart" Wireless in Under 10 Minutes

DC-DC Converters Quick Links 💌

The Z-One® POLs pictured below provide point-of-load power for Beijing Xinwei Telecom's "Big Smart" SCDMA wireless service. SCDMA incorporates advanced technologies, such as smart

antenna, software radio, and synchronous wireless access protocol, to target a Chinese market projected to grow from 3 million users in 2005 to over 20 million by 2007. This extremely complex application requires six different voltages, from 1.3 to 3.3VDC, with peak currents approaching 60 amps.

Xinwei's Chief scientist, Dr. Guanghan Xu commented, "Using the Z-Series graphical user interface, we were able to configure a power system in less than ten minutes.

This is extremely impressive considering that the diverse range of functionalities we implemented included paralleling, turn-on

cascading, and fault management. Z-One Digital Power saved weeks of design time compared to analog power management. The complex power requirements of our base station control board, combined with our need for on-the-fly reconfiguration, would have been extremely difficult to support without Power-One's revolutionary Z-One Digital Power."

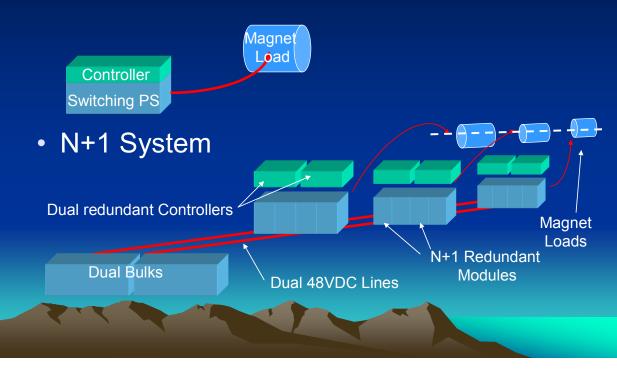
February 2, 2007

ILC HA Electronics R&D R. Larsen SLAC *Courtesy Power-One Corp 26

III. Power Systems Architectures

- 1. Crate & Card-Level Power Systems
- 2. DC Magnet Constant Current Power Supplies
- 3. Marx Klystron Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer

III-2. HA High Power Systems R&D


- Pulsed & DC Power Systems are major limitations to achieving High Availability in current machines.
 - HA principles being applied to all ILC power systems.
 - Goal is >0.99 for RF Power System, DC Magnet Power System
- 1/n Redundancy at 3 levels in Magnet PS, Modulators & Kickers:
 - *High current/power switches*
 - Modular construction
 - System level or Unit level hot spares or hot-swap
- Intelligent Diagnostics Layer
 - Minimize Mean Time to Repair, monitor health at card level.
- Goal: Keep operating with 1-2 failed cells; change failed cells while machine keeps running if possible.

February 2, 2007

Americas Region

III-2. DC Magnet Power & Control Systems

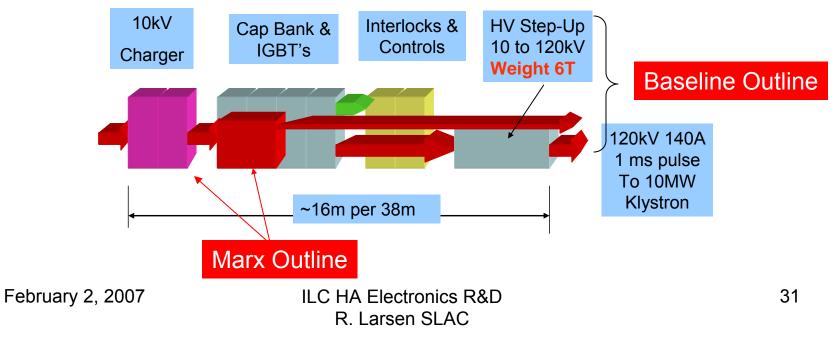
- For A=0.99, need redundant Bulk, Modules & Controllers
- 1. Magnet Power & Control Systems
- Traditional System

*Modular Supplies <1 to 60 kW *Current stability to .01% typical. *Strings & Single magnet applications

February 2, 2007

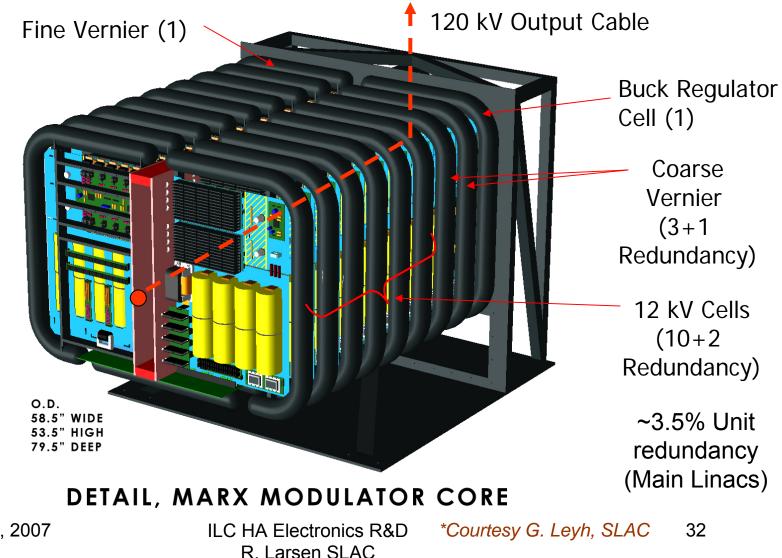
III. Power Systems Architectures

- 1. Crate & Card-Level Power Systems
- 2. DC Magnet Constant Current Power Supplies
- 3. Marx Klystron Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer

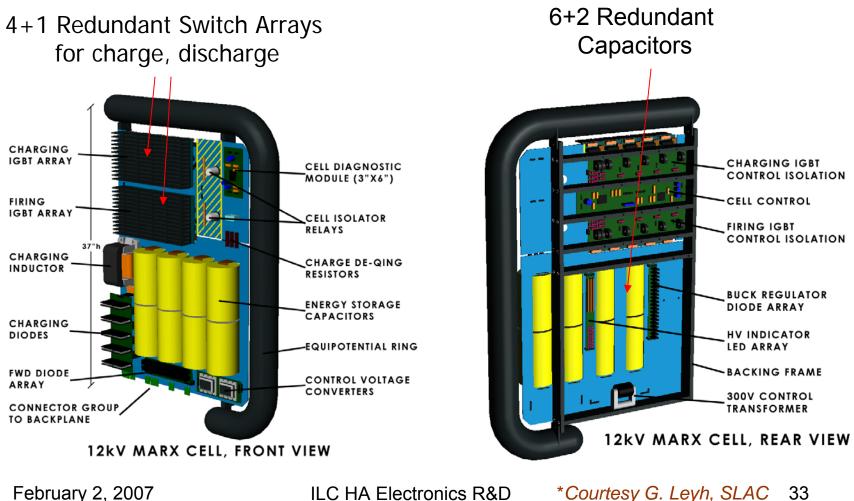

III. Marx Modulator

• Being investigated as alternate design to present switched cap "Bouncer" design

Goals:


Reduce size, weight, space by 3-4X Reduce cost by >2X Increase efficiency Demonstrate operation in 2007. **Specifications:**

120 kV, 140 A, 1.63 ms, 5 Hz 125 kW output power to klystron Efficiency from wall-plug ~90%


ILC Americas Region

III. Marx Assembly Overview*

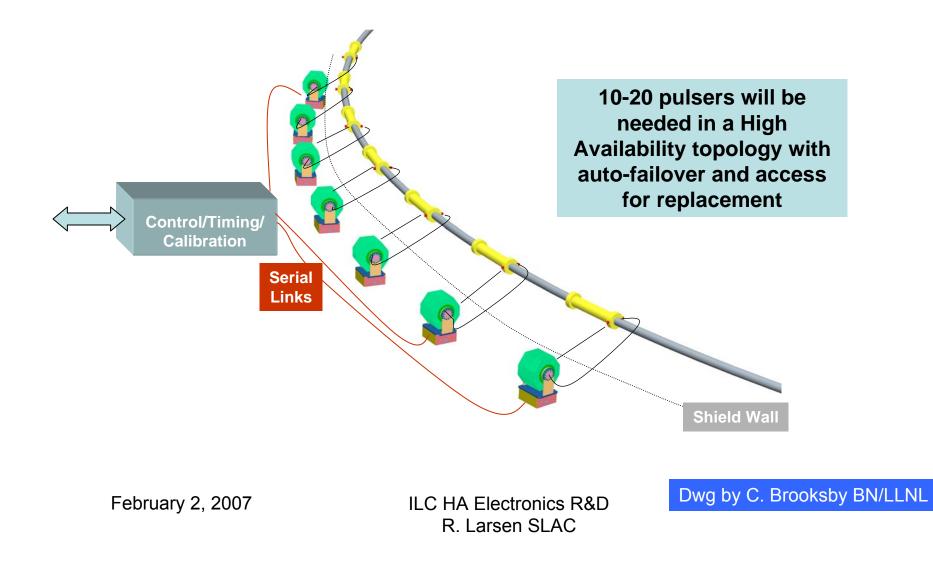
February 2, 2007

III. 12 kV Cell Detail*

R. Larsen SLAC

III. Power Systems Architectures

- 1. Crate & Card-Level Power Systems
- 2. DC Magnet Constant Current Power Supplies
- 3. Marx Klystron Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer


III-4. Damping Ring Kickers

- Damping Ring pulser performance directly related to size of the rings.
- Currently assuming can operate with 6 km circumference largely based on extrapolations of pulser performance.
- Architecture requires a large number of stripline pulsers to develop total kick.

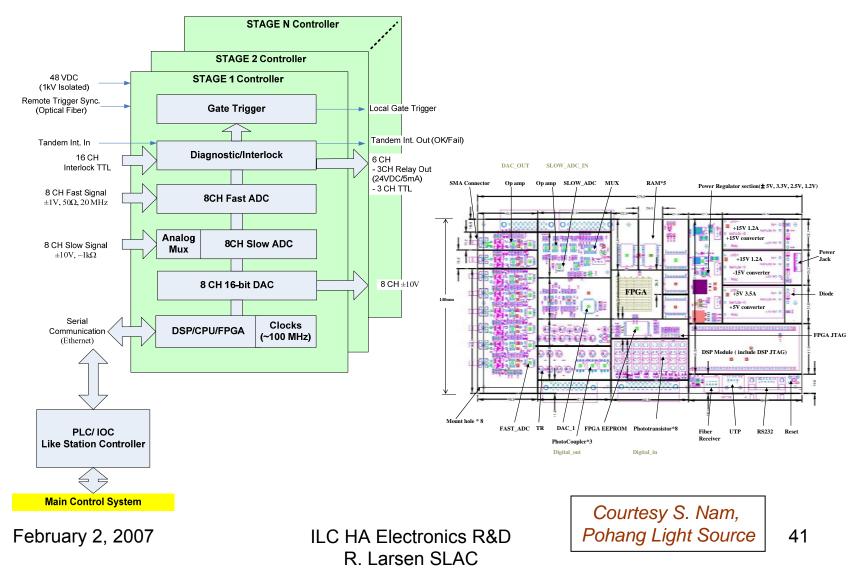
III-4. Damping Ring Kickers

- Goals:
 - Reduce size, cost of damping rings with 20 nsec beam interleave performance.
 - Limit size of DR to \sim 6 km circumference.
- Specifications:
 - Tr, Tf 1ns to +/-5-10 kV,
 - 3 MHz constant beam extract rate
 - Amplitude matching, timing to <0.1% stability long term
 - Multiple units needed in tandem

III-4. Kicker System Topology

III. Power Systems Architectures

- 1. Crate & Card-Level Power Systems
- 2. DC Magnet Constant Current Power Supplies
- 3. Marx Klystron Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer (DIL)


III-5. Diagnostic Interlock Layer

- DIL Goal: Help achieve near-zero MTTR
 - All power systems will have a "DIL" card or hybrid circuit in each power cell.
 - Similar in function to ATCA Shelf Manager for Controls crates but with added controls features such as interlock management, waveform capture and memory.
 - Gathers diagnostic information to view in control room: Interlock set points vs. actual levels; fast and slow waveforms.
 - Enables evasive action to avoid trips: Reduces load, adjusts set points if permitted; "safes" system in case of failure.
 - Manages Hot-Swap operation if feasible or module swap operation in case of trip.

III-5. Diagnostic Interlock Layer Concept

- DIL Functions (Typical)
 - Combination digital controller and memory of small size imbedded into power circuits such as power supplies, modulators
 - Captures power conversion waveforms in ADCs to detect early failures in switching circuits
 - Captures fast & slow waveforms, stores recent results to local memory
 - Monitors interlocks, controls trip settings
 - Monitors temperatures of critical components
 - Provides fast timing and trigger control & monitoring

III-5. DIL Prototype Functional Design

IV. Ongoing HA R&D Programs

- 1. ATCA Evaluation
- 2. DC Magnet Power Systems
- 3. Marx Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer

IV. Ongoing HA R&D Programs

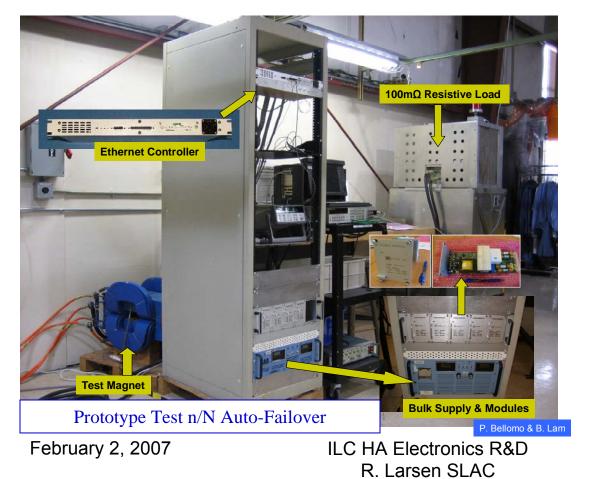
- 1. ATCA Evaluation
- 2. DC Magnet Power Systems
- 3. Marx Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer

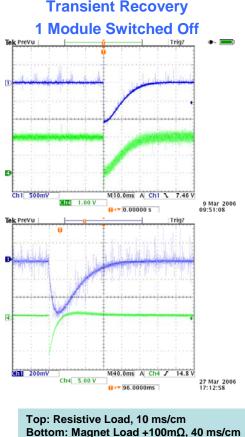
IV-1. ATCA Collaboration R&D

- Hardware/software tests of starter kit, shelf manager, auto-failover of controllers, VME adapter development
 - SLAC with University of Illinois
- Control system architecture, hardware & software modeling, commercial product search, integrated system search, racks & cooling
 - ANL, FNAL, SLAC
- ATCA Adaptation to front end instruments for LLRF, Detectors
 - DESY, FNAL, BNL, Yale
- Overall system cost estimates
 - ANL, FNAL, DESY, KEK, SLAC

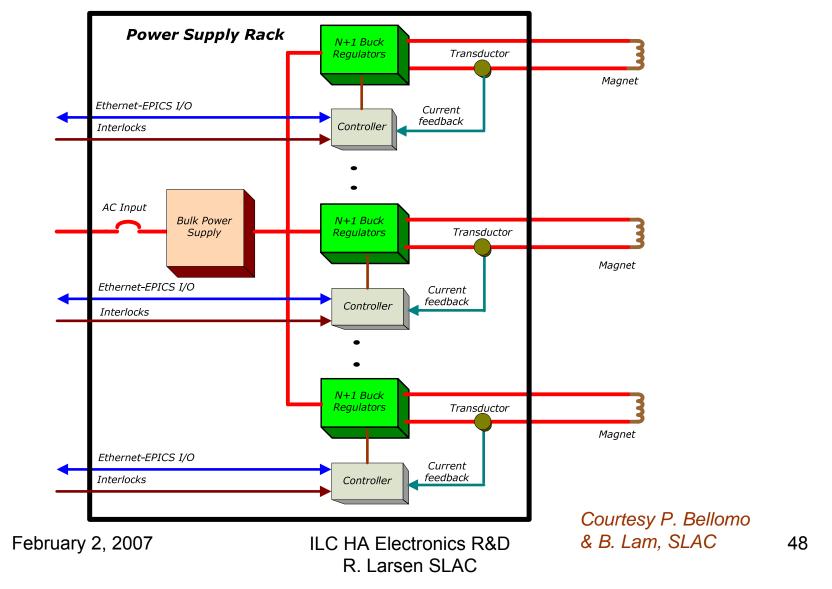
IV. Ongoing HA R&D Programs

- 1. ATCA Evaluation
- 2. DC Magnet Power Systems
- 3. Marx Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer


IV-2. DC Magnet Power Systems


- Study of commercial products in prototype 5kW system to demonstrate redundant N+1 architecture, auto-failover, current sharing stability
 - SLAC
- Application to system of 41 magnet supplies for ATF2 at KEK
 - SLAC with KEK, due to complete in 2008
- Development of dual redundant diagnostic controller for magnet supplies
 - SLAC
- Study of low voltage commercial products for crate, board level applications
 - SLAC, RW Downing Inc.

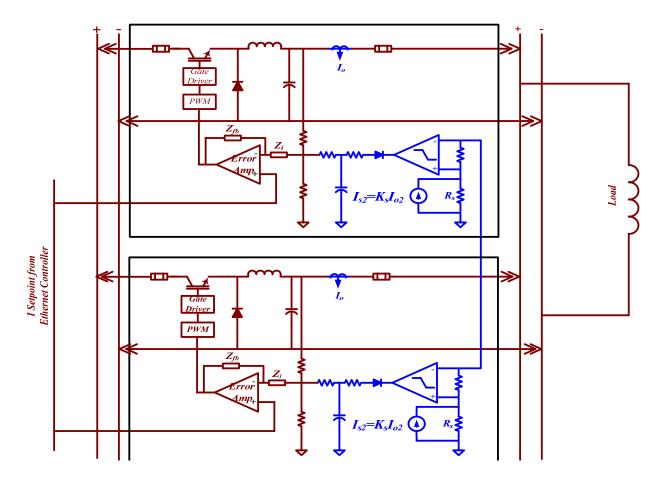
IV-2. Magnet PS Prototype R&D


- Approx. 18,000 magnets & supplies in all systems
- FY07-09 Goals: Demonstrate all HA features on multiunit test system in KEK ATF2.

Americas Region

Typical System Block Diagram

Bulk Power Supply Mfgrs


Elgar Electronics Corporation 9250 Brown Deer Road San Diego, CA 92121 Website: www.elgar.com IE Power 12 Falconer Drive, Unit 15 Mississauga, Ontario Canada L5N 3L9 www.iepower.com Lambda-EMI Aroma Square Bldg 5F Kamata, Ohta - Ku Tokyo 144-8721 Japan www.densei-lambda.com Matsusada - Shiga Headquarters 745 Aoji-Cho, Kusatsu -City, Shiga, 525-0041 Japan www.matsusada.com

February 2, 2007

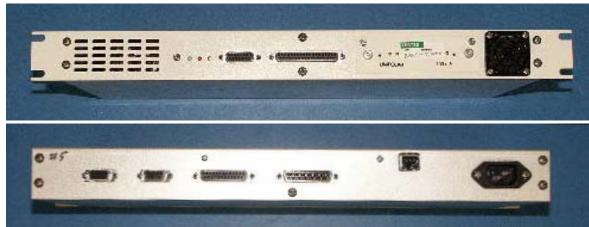
ILC HA Electronics R&D R. Larsen SLAC Courtesy P. Bellomo & B. Lam, SLAC

Democratic Current Share Circuitry

Courtesy P. Bellomo & B. Lam, SLAC

February 2, 2007

Commercial Power Modules



- Purpose current regulation of magnet current
- All 20V, 50A
- Parallel for current share and redundancy
- OCEM Italy IE Power Canada

February 2, 2007

ILC HA Electronics R&D R. Larsen SLAC Courtesy P. Bellomo & B. Lam, SLAC

Ethernet Power Supply Controller

Purpose

- Interfaces remote computer to power supply
- Closed loop control for current setting and regulation

Features

- Integrated EPICS IOC
- 100Mbps TCP/IP communications via UDP protocol
- SLAC-Built for PEP and SPEAR, ≥ 300,000h MTBF.
- Controllers slated for LCLS project use.

February 2, 2007

ILC HA Electronics R&D R. Larsen SLAC Courtesy P. Bellomo & B. Lam, SLAC

Note: Dual Redundant Controller with DIL features development started 2007

52

Configuration of 41-Supply System

$480V, 5 \varphi \qquad 120V, 1$ $48X \qquad \qquad$	<i>φ</i> 480 <i>ν</i> , 5 <i>φ</i> ↓	480 <i>ν</i> , <i>s φ</i> 120	$V, I \Psi \qquad 480V, S \Psi$	480 <i>V</i> , <i>5 Φ</i> 120	$ \begin{array}{cccc} W, 1 \ \psi & 480V, 5 \ \psi \\ \downarrow & \downarrow \\ \downarrow \\$
47X - 46X - 45X - 45X - 43X - 43X - 43X - 42X - 41X - 40X -	AC Distribution Main and 2 – 30A Circuit Breakers	AC Distribution Main and 2 – 30A Circuit Breakers	AC Distribution Main and 2 – 30A Circuit Breakers	AC Distribution Main and 2 – 30A Circuit Breakers	AC Distribution Main and 2 – 30A Circuit Breakers
39X 38X 38X 37X 37X 37X 37X 37X 37X 37X 36X 35X 95 Controller 33X 32X 95 Controller 30X 95 Controller 20X 20X 20X 31W	Transductors PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller M Quad PS 3kW	Transductors PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller S Controller PS Controller S Controller	Transductors PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller Spare Controller Spare Controller Spare Controller	Transductors PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller Spare Controller Spare Controller	Transductors PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller PS Controller Spare Controller Spare Controller
25X 24X 23X 23X 23X 23X 23X 23X 23X 23	M Quad PS 3kW M Quad PS 3kW M Quad PS 3kW M Quad PS 3kW SkW M Quad PS 3kW SkW	M Quind PS 3kW S M Quind PS 3kW S M Quind PS 3kW	FFSex FF IkW FF FFSex FF IkW FF FFSex FF IkW S FF Oct IkW S	$ \begin{array}{c c} FFQ \\ IkW \\ \end{array} $	FFQ FFQ 1kW IkW FFQ FFQ 1kW IkW FFQ FFQ 1kW IkW FFQ S FFQ IkW FFQ FFQ 1kW FFQ 1kW S FFQ IkW
10X 9X 8X 7X 6X 5X 5X 90V, 400A Bulk Power Supply 5X	30V, 400A Bulk Power Supply	30V, 400A Bulk Power Supply	30V, 400A Bulk Spare Power Supply	Space	Space
4X 4X 3X 2X 1X 4X 30V, 400A Bulk Power Supply	30V, 400A Bulk Power Supply	30V, 400A Bulk Power Supply	30V, 400A Bulk Power Supply	30V, 400A Bulk Power Supply	30V, 400A Bulk Power Supply
February 2, 2007			ctronics R&D en SLAC	Courtesy & B. Lam	r P. Bellomo n, SLAC

53

IV. Ongoing HA R&D Programs

- 1. ATCA Evaluation
- 2. DC Magnet Power Systems
- 3. Marx Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer

Americas Region Americas Region

IV-3. First Marx Assembly Underway

February 2, 2007

ILC HA Electronics R&D Courtesy G. Leyh, SLAC R. Larsen SLAC

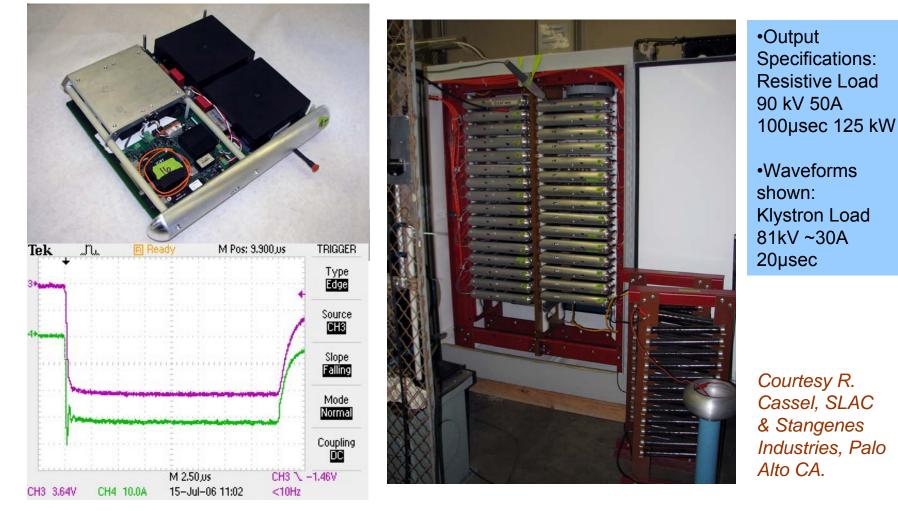
LC Americas Region

IV-3. 8-Cell Output Waveforms

Goal: 120 kV Reached: 80kV 1/25/07.

February 2, 2007

ILC HA Electronics R&D R. Larsen SLAC Courtesy G. Leyh, SLAC 56


Industrial Marx Efforts

- Two industrial SBIR's underway (Phase I).
- One company received contract for military agile radar application & successfully lab-tested first unit.
- Similar in power to ILC Marx, but shorter (variable width) pulse, higher (variable) trigger rate, lower voltage (90 kV max c.f. 120 kV for ILC.

Significant demonstration of viability of Marx.

February 2, 2007

Commercial Marx Demonstration

February 2, 2007


ILC HA Electronics R&D R. Larsen SLAC 58

IV. Ongoing HA R&D Programs

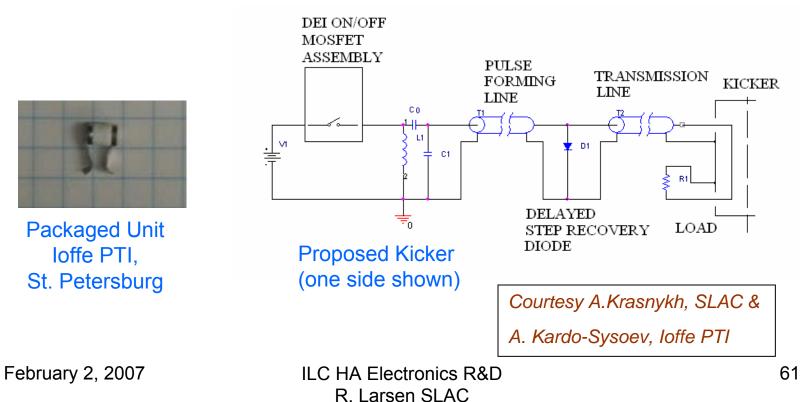
- 1. ATCA Evaluation
- 2. DC Magnet Power Systems
- 3. Marx Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer

LC Americas Region

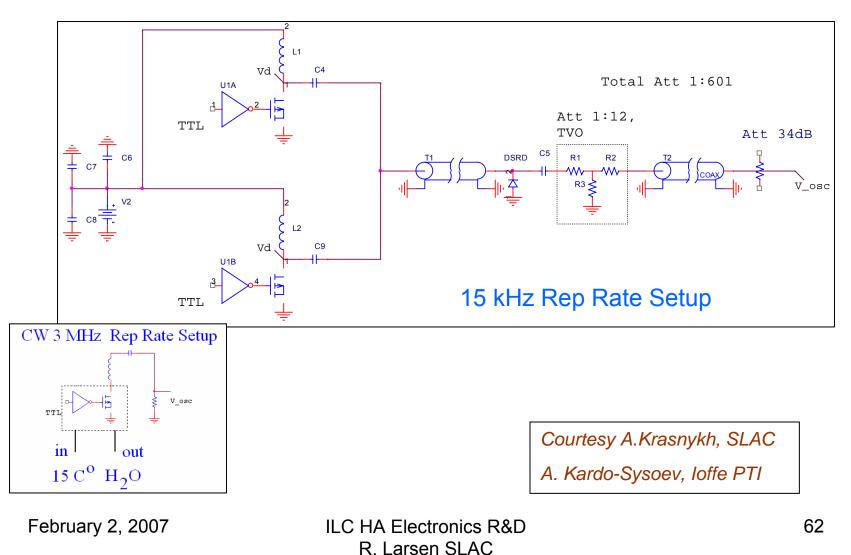
IV-4. LLNL Induction Kicker

LLNL Kicker Tested at KEK ATF

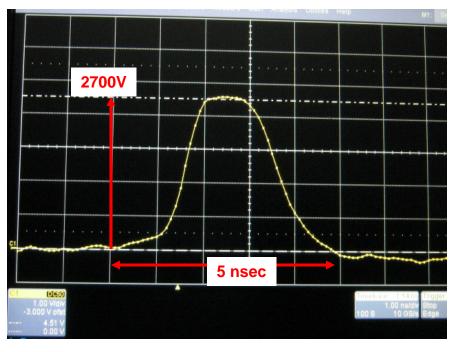
produces +/-8 kV bipolar pulsesDoes not yet achieve desired Tr, Tf, clean tail


February 2, 2007

ILC HA Electronics R&D R. Larsen SLAC Courtesy E. Cook LLNL


LC Americas Region

IV-4. DSRD R&D


- Parallel R&D started on *Drift Step Recovery Diode (DSRD)* circuit, possibly using Induction unit as "pump."
- Tr, Tf of 1-2 nsec 5 kV into 50 Ω demonstrated on bench.
- Note- DSRD's used are samples. Commercialization is in progress.

IV-4. DSRD Test Circuits

IV-4. Test Circuit Waveforms

A_out = 4.5 x 600 = 2,700 V H=1 ns/cm

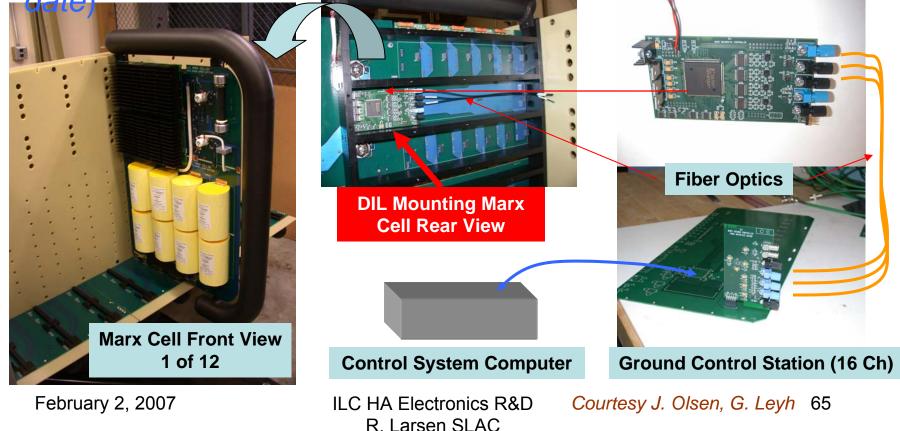
LeCroy @ 10GS/s

∆: 400 V @: 400 V 10 ns 100 V Ch2 500mVΩ M 100ns Aux J 4.09 V 13 Jul 2006 D 50.0ns Runs After 10.0000 100 ns/div Tail effects need to be reduced

Courtesy A.Krasnykh, SLAC A. Kardo-Sysoev, loffe PTI

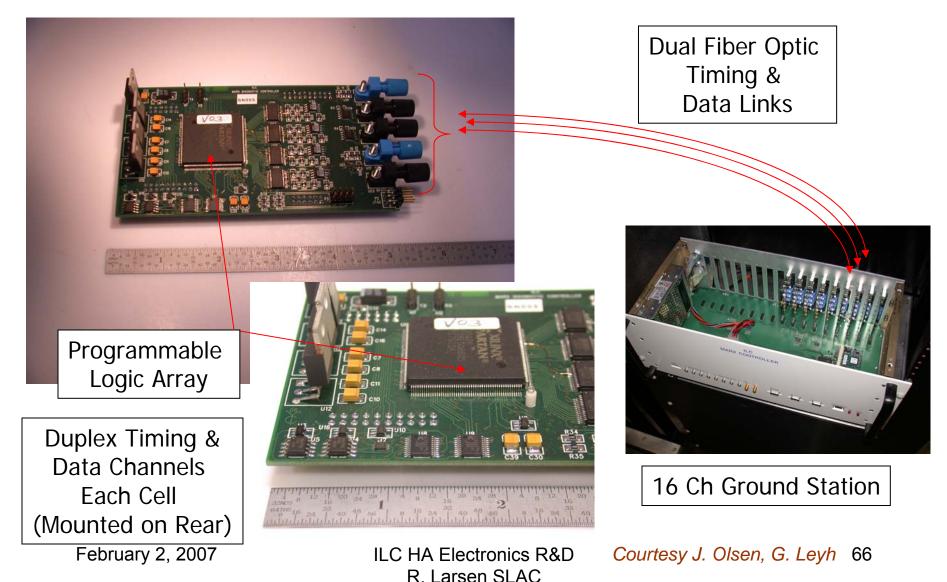
February 2, 2007

ILC HA Electronics R&D R. Larsen SLAC


63

IV. Ongoing HA R&D Programs

- 1. ATCA Evaluation
- 2. DC Magnet Power Systems
- 3. Marx Modulator
- 4. Damping Ring Kickers
- 5. Diagnostic Interlock Layer


IV-5. Marx DIL Controller

- DIL had to be designed for very low power
- Operates on cell control power from charged capacitor
- Board floats up to 120 kV at output (80 kV achieved to

IV-5. DIL Controller Details

V. Conclusions-1

"Design and build systems that do not interrupt machine operation when components fail."

- HA design strategy well accepted in the ILC
 - ILC 10 times larger than largest comparable machine (SLAC)
 - Cannot meet machine up-time goals without HA, ~10X improvement.
 - Full machine goal of A>0.85 requires all electronics subsystems to strive for \rightarrow 0.999
 - HA applies to all systems, not just electronics
- $A \rightarrow 0.999$ is achievable with combination of strategies
 - N+1 redundancy tolerates faults without immediate interruption
 - Modular design for quick replacement of faulty unit (minimize MTTR)
 - Auto-failover for networks carrying critical control, RF and timing signals
 - Hot-Swap of modules using shelf manager or DIL to detect, isolate, quickly repair.
 - Improved, pervasive diagnostics through DIL crucial to overall success

February 2, 2007

V. Conclusions-2

- Evaluation of ATCA Platform is Critical
 - ATCA platform offers ready solution to many controls, instrument applications.
 - Industrial effort to design ATCA could never have been undertaken by labs as in past standards efforts.
 - Advances in chip technologies, rapid change demand a modernized platform for physics
 - Large Telecom market for ATCA promises affordable core product solutions for labs.
 - Shelf manager, HA software design pose largest problem for controls and instrumentation.
 - Industrial software and hardware solutions growing rapidly, will offer useful solutions to physics systems.

ATCA Workshop – IEEE RT2007 Conference Fermilab - 4/29-5/6/2007

February 2, 2007

V. Conclusions-3

- ILC offers exciting opportunity to frame the next-generation challenges. However:
 - Engineering needs to develop effective collaborations due to size of challenges and relative shortage of experts.
 - Collaboration needs to evolve with other large projects such as ITER, ATLAS Upgrade (starting).
- The Laboratory HA Challenge
 - Need R&D to decide feature set, evaluate suitability of ATCA as instrument platform, prototype all critical hardwaresoftware applications.
 - Labs need to build strong international collaboration of electronics experts to meet future challenges in both machines and detectors.
 - Learning to take advantage of ATCA features requires large investment especially in software systems.

February 2, 2007

Acknowledgment

 Besides those acknowledged on the slides, a large team has actively contributed to the High Availability electronics program. The laboratories involved besides SLAC are Argonne, Fermilab, Lawrence Livermore, KEK, DESY, Pohang, University of Illinois (UIUC). R. W. Downing formerly of UIUC is a consultant for the program.