# Longitudinally segmented dual readout calorimetry Working Report

Georgios Mavromanolakis °•, Adam Para °, Niki Saoulidou °

FERMILAB ° University of Cambridge •

Outline

► General

Case Studies

► Summary

070306 \_\_\_\_\_

# **Dual readout and energy correction**

#### • correct Eion for single pions

- : define CorrectionFactor = 1 calibr \* Eion/Echer with calibr = Echer/Eion for electrons at given energy
- : get correction function Fion() by fitting Eion vs CorrectionFactor of single pions at given energy
- : corrected energy = Eion/Fion(), applied to pions of various energies

# **Dual readout and energy correction**

#### • correct Echer for single pions

- : define CorrectionFactor = 1 calibr \* Eion/Echer with calibr = Echer/Eion for electrons at given energy
- : get correction function Fcher() by fitting Echer vs CorrectionFactor of single pions at given energy
- : corrected energy = Echer/Fcher(), applied to pions of various energies

## **Eion, Echer correlation**



#### **Eion vs CorrectionFactor**



# **Case Studies**

- : calorimeter volume composed of lead glass only, segmented longitudinally in 10000 layers, 1 mm thick each
- : study cases of different sampling unit(=absorber+ionisation+cherenkov part) with xx,yy,zz layers per part

#### ▶ . data files

- :  $e^-$  5 GeV, e-\_E5.0\_N10000\_Tac0.\_Tch1.0\_Tab0.0\_MactLeadGlass\_MabsLeadGlass.root
- :  $\pi^-$  10 GeV, pi-\_E10.0\_N10000\_Tac0.\_Tch1.0\_Tab0.0\_MactLeadGlass\_MabsLeadGlass.root
- :  $\pi^-$  1 GeV, pi-\_E1.0\_N10000\_Tac0.\_Tch1.0\_Tab0.0\_MactLeadGlass\_MabsLeadGlass.root
- :  $\pi^-$  5 GeV, pi-\_E5.0\_N10000\_Tac0.\_Tch1.0\_Tab0.0\_MactLeadGlass\_MabsLeadGlass.root

## sampling abs:ioncher 0:1 mm



6. G.Mavromanolakis, ...

## sampling abs:ioncher 0:1 mm



7. G.Mavromanolakis, ...

# sampling abs:ioncher 0:1 mm



8. G.Mavromanolakis, ...

### sampling abs:ion:cher 5:18:2 mm

### $\pi^{-}$ 1 GeV $\pi^{-}$ 5 GeV $\pi^{-}$ 10 GeV



### sampling abs:ion:cher 5:18:2 mm

### $\pi^{-}$ 1 GeV $\pi^{-}$ 5 GeV $\pi^{-}$ 10 GeV



# **Energy resolution for single pions**



case abs:ion:cher 30:18:2

case abs:ion:cher 5:18:2

case abs:ioncher 0:1

50ı

RMS/Mean (%)

# **Energy resolution for single pions**

corrected by  $\pi^-$  5 GeV





case abs:ion:cher 5:2:18

case abs:ion:cher 5:18:2

# **Summary**

### energy correction

: "correcting Echer" is equivalent to "correcting Eion" i.e. same improvement on energy resolution

: corrected Echer vs corrected Eion shows strong linearity, line has  $45^{\circ}$  slope and passes from (0,0)

### dual readout and longitudinal segmentation

: balance of passive material and ionization and cherenkov active media is crucial



### sampling abs:ion:cher 30:18:2 mm

### $\pi^{-}$ 1 GeV $\pi^{-}$ 5 GeV $\pi^{-}$ 10 GeV



### sampling abs:ion:cher 30:18:2 mm

#### $\pi^{-}$ 1 GeV $\pi^{-}$ 5 GeV $\pi^{-}$ 10 GeV

