

Dual Readout Resolution

This time use samples with 10000 layers Scintillator signal by summing appropriate eche[i] Cherenkov signal by summing appropriate echeph[i] Analysis a-la-Wigmans (NIM A537 (2005)) P = Cherenkov signal \triangleright S = Scintillator signal $egin{array}{rcl} Q &=& E(f+r_q(1-f)) &=& E(r_q+(1-r_q)f) \end{array}$ $S = E(f + r_s(1 - f)) = E(r_s + (1 - r_s)f)$ $r_{q}(r_{s}) = intrinsic h/e$ for cherenkov (scintillator) calorimeter > Q and S calibrated on electrons

1/5

stituto Nazionale di Fisica Nucleare

D EsEc4-3

20000 ID EsEcPfx4-3

20000

4000

4000

5915

7627 1538

1012

Entrie

Mean x Mean y

RMS >

18000

Entries

Mean Meany

RMS RMSy

18000

12000

12000

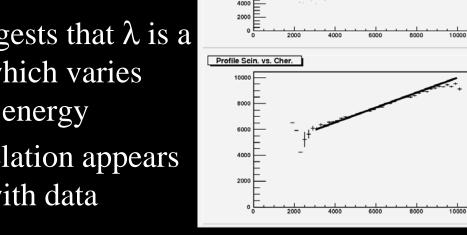
14000

14000

16000

16000

Signal Correlations (1)


Scintillator vs. Cherenkov

20000

Correction exploits correlations between Q and S signal

- \triangleright Physics suggests that λ is a parameter which varies slowly with energy
- Linear correlation appears consistent with data

$$egin{array}{rcl} S &=& rac{1-r_s}{1-r_q}Q + E\left(1-rac{1-r_s}{1-r_q}
ight) \ &=& \lambda Q + E(1-\lambda) \end{array}$$

2/5

Signal Correlations (2)

***** Two ways to determine λ :

Slope of line fit of S vs. Q data (as in previous formula: E fixed)
From statistical correlation and errors:

3/5

$$\lambda = \sigma_{qs} / \sigma_{q}^{2}$$

The two methods give very similar results
 Statistical correlation returns the optimal resolution

Energy Dependence

\clubsuit Checked stability of λ for several combinations

Scintillator	Cherenkov	λ -fit	λ -stat	λ -fit	λ -stat	λ -fit	λ -stat
Thickness	Thickness	1GeV	$1 { m GeV}$	$10 { m GeV}$	$10 { m GeV}$	20 GeV	$20 { m GeV}$
(mm)	(mm)						
3	2	0.4915	0.5559	0.5848	0.5468	0.5808	0.5602
3	10	0.4868	0.5514	0.5815	0.5435	0.5783	0.5614
3	20	0.4816	0.5465	0.5836	0.5448	0.5782	0.5594
3	40	0.4928	0.5149	0.5824	0.5545	0.5780	0.5641
10	2	0.4888	0.5172	0.5836	0.5386	0.5795	0.5552
10	10	0.4852	0.5172	0.5814	0.5391	0.5787	0.5520
10	20	0.4728	0.4991	0.5802	0.5366	0.5792	0.5551
10	40	0.4676	0.4742	0.5792	0.5365	0.5781	0.5581
20	2	0.4803	0.4661	0.5790	0.5262	0.5769	0.5430
20	10	0.4760	0.4758	0.5804	0.5324	0.5779	0.5476
20	20	0.4756	0.4647	0.5777	0.5327	0.5775	0.5495
20	40	0.4538	0.4307	0.5753	0.5267	0.5756	0.5531
30	2	0.4682	0.4229	0.5771	0.5109	0.5725	0.5346
30	10	0.4755	0.4438	0.5765	0.5196	0.5762	0.5418
30	20	0.4691	0.4368	0.5767	0.5203	0.5756	0.5447
30	40	0.4402	0.3932	0.5685	0.5181	0.5661	0.5415
40	2	0.4614	0.3759	0.5763	0.5028	0.5714	0.5205
40	10	0.4668	0.4106	0.5755	0.5087	0.5756	0.5358
40	20	0.4506	0.3969	0.5721	0.5117	0.5725	0.5412
40	40	0.4523	0.3553	0.5762	0.5157	0.5746	0.5304

-Fairly stable with configuration -Fairly stable with energy -> small variation 10 -20 GeV

-> 15% variation 1 – 10 GeV

Dual readout calorimeter meeting, February 20, 2007

Energy Dependent:

Add back the lost energy $S' = S + \lambda(E - Q)$ Works very well in any configuration, but ... we are not supposed to know E! $\sigma_{S'} = \sqrt{\sigma_s^2 - \lambda^2 \sigma_q^2}$

Energy Independent:

Solve for E eliminating the EM fraction f in the equations:

$$S' = rac{S-\lambda Q}{1-\lambda} \qquad \sigma_{S'} = rac{\sqrt{\sigma_s^2-\lambda^2\sigma_Q^2}}{1-\lambda}$$

5/5

Compete with 1/(1-λ) degradation
 Works only for certain configurations

Dual readout calorimeter meeting, February 20, 2007

i Fisica Nucleare

Energy Corrections (2)

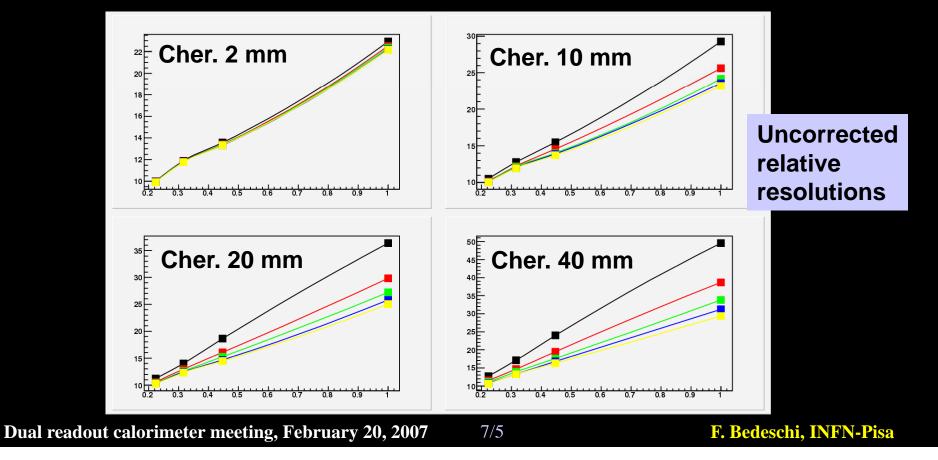
Hard to find good configurations!

	~ 1	<i>a</i> • •	<u> </u>				F F 1
Scintillator	Cherenkov	Scint.	Cher.	En. Ind.	En. Dep.	En. Dep.	En. Ind.
Thickness	Thickness	only	only	$(\lambda \text{ from fit})$	$(\lambda \text{ from fit})$	$(\lambda \text{ from stat.})$	$(\lambda \text{ from stat})$
(mm)	(mm)						
3	2	11.90	25.63	8.81	3.66	3.67	8.25
3	10	12.80	25.59	12.55	5.25	5.30	11.84
3	20	14.02	25.59	16.32	6.79	6.87	15.40
3	40	17.07	25.57	22.98	9.95	10.06	22.23
10	2	11.84	25.81	8.91	3.71	3.71	8.23
10	10	12.24	25.72	10.66	4.46	4.49	9.95
10	20	12.98	25.65	13.48	5.66	5.72	12.61
10	40	14.64	25.62	18.29	7.69	7.80	17.19
20	2	11.82	26.09	9.45	3.97	3.97	8.61
20	10	12.14	25.86	10.58	4.43	4.46	9.76
20	20	12.59	25.76	12.29	5.18	5.23	11.45
20	40	13.88	25.73	16.45	6.98	7.08	15.31
30	2	11.80	26.43	10.06	4.24	4.22	8.92
30	10	11.99	26.18	10.52	4.44	4.46	9.55
30	20	12.42	25.99	12.22	5.16	5.21	11.17
30	40	13.31	25.85	15.00	6.46	6.55	13.92
40	2	11.78	26.70	10.30	4.35	4.32	8.99
40	10	11.95	26.38	10.90	4.61	4.62	9.71
40	20	12.32	26.12	12.16	5.19	5.23	11.03
40	40	13.27	26.00	15.06	6.36	6.45	13.73

-All configurations with improvement of corrected energy resolution require unreasonable amounts of scintillator

Dual readout calorimeter meeting, February 20, 2007

6/5



INFN Istituto Nazionale di Fisica Nucleare

Energy dependence (1)

***** Study σ_E / E vs $1 / \sqrt{E}$ for all configurations

Determine slope and constant term

Energy Dependence (2)

En. Ind. Correction:

- Slope improves only at very small sampling fractions
- Constant term does the opposite

DREAM test beam:

Slope (corr): 49 (41)%
 C.term (corr): 7 (4.2)%

	Scint.	Cher.	Scintillator		En. Ind. Corr.		En. Dep. Corr.	
	Thick.	Thick.	Slope	C. term	Slope	C. term	Slope	C. term
	$\mathbf{m}\mathbf{m}$	$\mathbf{m}\mathbf{m}$	%	%	%	%	%	%
t	3	2	16.49	6.40	23.76	0.61	11.18	0.12
	3	10	24.18	4.99	33.57	1.15	17.65	-0.24
	3	20	32.46	3.94	39.21	3.46	22.93	-0.06
	3	40	47.42	2.26	44.24	7.90	28.22	1.44
	10	2	16.02	6.48	22.68	0.90	11.47	0.07
	10	10	19.81	5.80	29.33	0.78	15.09	-0.16
1	10	20	24.78	5.06	34.61	1.73	19.60	-0.36
	10	40	35.04	3.68	40.93	4.42	26.75	-0.37
	20	2	15.81	6.52	21.95	1.44	12.25	0.06
	20	10	18.01	6.15	26.22	1.24	14.50	-0.14
	20	20	21.55	5.65	30.74	1.83	17.74	-0.24
	20	40	29.15	4.61	36.95	3.62	24.44	-0.49
	30	2	15.66	6.55	20.89	2.02	12.72	0.14
,	30	10	17.29	6.29	24.47	1.71	14.31	-0.04
)	30	20	19.86	5.92	27.89	2.18	16.81	-0.08
	30	40	26.26	4.97	34.34	3.21	23.34	-0.60
	40	2	15.60	6.55	20.44	2.37	13.71	0.02
	40	10	16.82	6.37	23.09	2.19	14.47	0.01
	40	20	18.92	6.12	26.02	2.63	16.99	-0.14
	40	40	23.90	5.52	31.05	3.78	22.19	-0.42

Conclusions

Found two classes of energy corrections which compensate f_{EM} fluctuations

Only one is energy independent

- Works only for some configurations, typically requiring large amounts of scintillator
- Cannot find a configuration which performs as DREAM with only 2% scintillator sampling fraction

9/5

What is the magic of DREAMs?