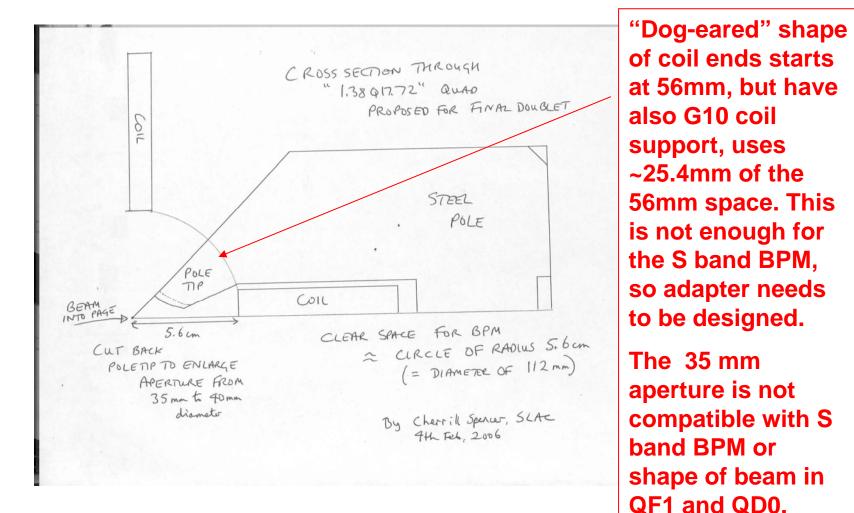


Information on technique chosen to enlarge the bore of the QC3 style quads. 14th /15th March 2007

Cherrill Spencer, SLAC Member of ATF2 Magnet Team


14/15 Mar 2007

Cherrill Spencer, SLAC. Info on QC3 enlarging

1

Shape of pole tip and coil in the 1.38Q17.72 quad. Will machine pole tip to make larger aperture

14/15 Mar 2007

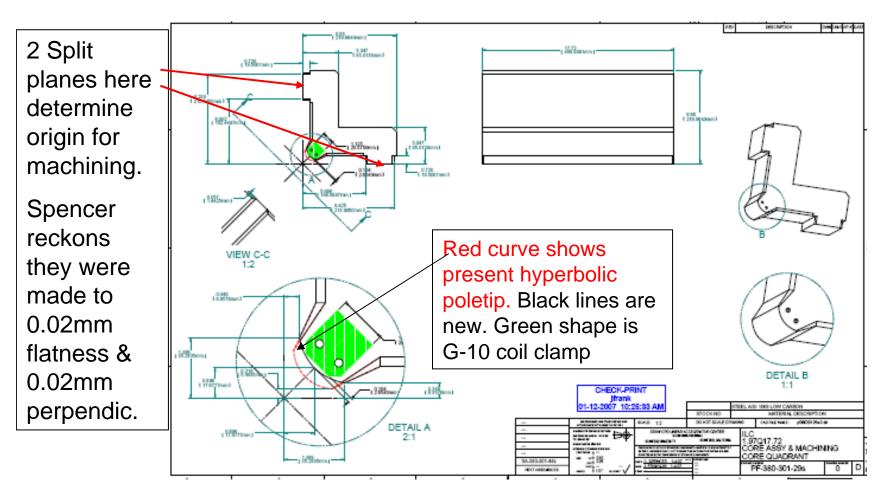
Cherrill Spencer, SLAC. Info on QC3 enlarging

ATF2 Compare predictions of multipole content with tolerances from James Jones & S. Kuroda

Magnet Name	Tolerance 6 pole/quad At r=1cm	Tolerance 12 pole/quad	POISSON Prediction 12pole/quad	Tolerance 20pole/quad	POISSON Prediction 20pole/quad
QF1	9.5x10 ⁻⁵	2.46x10 ⁻⁴	1.08x10 ⁻⁴	1.19x10 ⁻³	2.57x10 ⁻⁶
QD0	5.26x10 ⁻⁵	3.08x10 ⁻³	1.08x10 ⁻⁴	5.98x10 ⁻¹	2.57x10 ⁻⁶

ABOVE TABLE IS FOR A 50mm diameter bore.

Tightest 12pole/quad tolerance is for QF1. POISSON often under-predicts multipole value, we have 2.3 times margin. But if 12pole is too large we have at least 2 ways to reduce it: by chamfering poletip ends or by adding steel buttons on poletip end; Determine the button size and position by experiment :more on Spencer's experience with this below.


PF ADE2 ONS USING HALBACH's 1969 "p Magnets s" paper	Sextupole	Octupole	Decapole (10-pole)	12-pole
ATF2 Tolerances QF1	9.56E-05	1.01E-04	2.46E-04	2.46E-04
QD0	-5.26E-05	-1.58E-04	-1.10E-03	-3.08E-03
Single Poletip	8.15E-05	-1.33E-21	4.89E-06	1.14E-06
1 mil Radial misplacement	-8.15E-05 skew	1.08E-05 skew	4.89E-06 skew	2.09E-22 skev
Single Poletip	1.63E-04	-2.65E-21	9.78E-06	2.28E-06
2 mil Radial	-1.63E-04 skew	2.16E-05 skew	9.78E-06 skew	4.19E-22 skev
Single Poletip	-8.15E-05	-3.41E-05	-4.89E-06	-1.35E-22
1 mil Azimuthal	-8.15E-05 skew	-4.18E-21 skew	-4.89E-06 skew	7.35E-07 skev
Single Poletip	-1.63E-4	-6.82E-05	-9.78E-06	-2.70E-22
2 mil Azimuthal	-1.63E-4 skew	-8.35E-21 skew	9.78E-06 skew	1.47E-06 skev
All 4 Poletips	-6.52E-04	-1.06E-20	-3.91E-05	1.08E-21
->Sextupole. Worst Case	-2.40E-19 skew	0.0 skew	-3.26E-20 skew	4.05E-21 ske
1 mil Rad, Azi				
All 4 Poletips	-1.30E-03	-2.12E-20	-7.82E-05	2.16E-21
->Sextupole. Worst Case	-4.80E-19 skew	0.0 skew	-6.52E-20 skew	8.09E-21 ske
2 mil Rad, Azi				
All 4 Tips	-7.99E-20	-1.36E-4	1.92E-21	-2.07E-21
Oct. Worst Case	1.28E-19 skew	-6.68E-20 skew	-2.88E-21 skew	0.0 skew
1 mil Azimuthal				
All 4 Tips	-5.12E-18	4.24E-19	1.84E-19	3.65E-04
12-pole Worst Case	-1.13E-17 skew	0.0 skew	3.68E-19 skew	2.68E-19 ske
ar 2007 2mm Radial	herrill Spencer, S	AC Info on		<u></u>

- Sextupole component is very sensitive to poletip being at wrong radius or the poletip being offset "azimuthally"
- Appears that errors of size 0.001" (=25 microns) are significant for producing unwanted sextupoles.

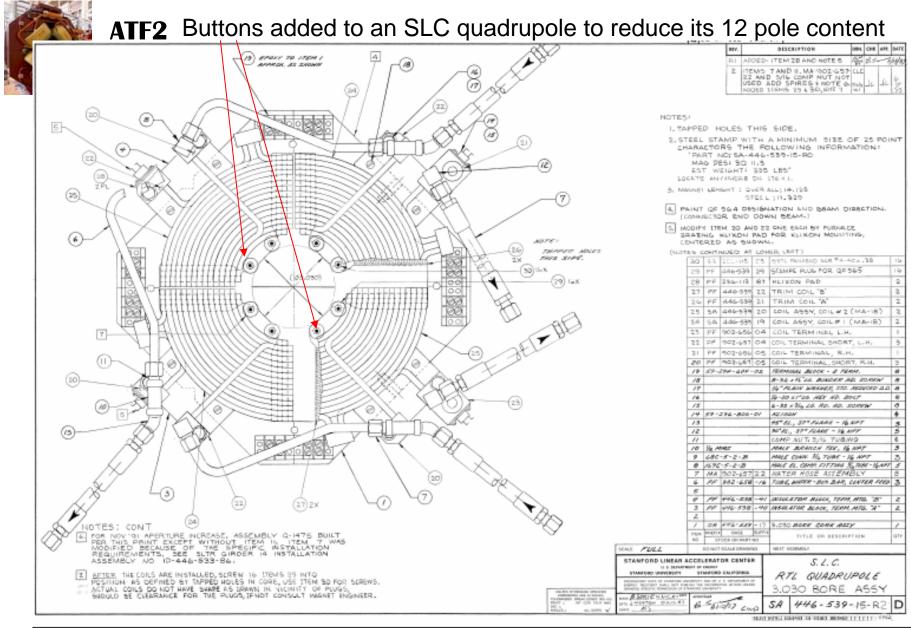
Not finished drawing showing how much of poletip needs to be removed, if we were to machine the poletips. VERY EXPENSIVE TO DO!

Chosen method for enlarging the "QC3" quad's bore diameter

Shim will be low carbon steel, ground to 0.0005" flatness

Place a very flat and precise thickness shim in each split plane to "explode" the quad and enlarge the bore diameter.

Cherrill Spencer, SLAC. Info on QC3 enlarging


ATF2

Magnets

Multipoles predicted if pull back the hyperbolic poletip by adding shims at split planes

- COMPARE POISSON PREDICTIONS WITH JAMES JONES TOLERANCES :
- Tolerances for QD0 : 12pole/quad < 3.08 x10(-3) and 20pole/quad < 5.98 x10(-1) at radius= 1cm .
- Poisson predictions (same values at the different currents):
 - 12pole/quad: 1.86x10(-3)
 - 20pole/quad: 4.18x10(-6)
- SO HAVE SATISFIED BOTH 12 pole and 20 pole tolerances.
- TOLERANCES FOR QF1 : 12pole/quad < 2.46 x10(-4) and 20pole/quad < 1.19x 10(-03) at r= 1cm,
- So have not satisfied QF1's 12 pole tolerance, although have satisfied the 20 pole tolerance.
- DECIDED that this shimming method was easier and cheaper to try first than actually machining back the poletips and the larger-than-we-want 12 poles can be reduced by putting buttons on the ends; or chamfering the ends.

14/15 Mar 2007

14/15 Mar 2007

Cherrill Spencer, SLAC. Info on QC3 enlarging

9

ATF2 Effect of 8 buttons on one end of Magnets RTL quadrupole

- Bore diameter = 3.03" = 77 mm
- At r= 17.9mm
 - 12pole/quad without buttons = $0.148\% = 1.48x \ 10(-3)$
 - -12 pole/quad with buttons = $0.017\% = 1.7 \times 10(-4)$
 - BUT sometimes the octupole went UP with the buttons.
 - Effect of buttons on sextupole needs to be studied more- by Spencer- has data.