ATF2 project: Investigation on the honeycomb table vibrations

Laboratories in Annecy working on Vibration Stabilization

Benoit BOLZON

33rd ATF2 meeting, 24th January 2007

Presentation

✓ **ATF2 constraint:** Relative motion between the Shintake monitor and the final magnets < 6nm

✓ **ILC configuration:** Final magnets and Shintake monitor on 2 separate supports

✓ **ATF2 floor:** Coherence of ground motion good up to a distance of 4-5m (4m: distance between Shintake monitor and the last magnets)

 \checkmark First idea: Shintake monitor and last magnets movement same than the ground

 \rightarrow Necessity of having stiff supports well fixed on the floor in order that these supports move like ground motion

Presentation

✓ At LAPP: Very stiff honeycomb table with a first eigenfrequency guaranteed to be at 230Hz by TMC company

 \rightarrow Measurements done with an impact testing hammer

 \rightarrow Table supported at four points, along the 2 nodal lines of the lower mode situated at 22% from the ends of the table

Presentation

✓ **Honeycomb table:** Good candidate as a support for magnets

 \rightarrow But need to find a way to fix this table on the ground

✓ LAVISTA team: Investigation on our honeycomb table

- Fixation of the table on the ground
- > Table transfer function measurement
- Coherence between the floor and the table measurement
- Relative motion between the table and the floor measurement
 - \rightarrow We are still working on (try to find a way to calculate it)

✓ Ground not flat at all: Positioning of 4 high steel supports of the same layer (with a thickness precision of 0.1mm) between the ground and the four corners of the table

 \rightarrow Gap of 5mm between the top of a support and the bottom of one table corner

✓ Not to have this gap anymore: positioning of 2 home-made spacers with a thickness precision of 0.1mm

✓ Checking that the table is leveled thanks to a spirit level

Sensors	Guralp CMG-40T	ENDEVCO86
Measurement directions	X, Y, Z	Z
Sensitivity	2000V/m/s	10V/g
Frequency range	[0.033–50]Hz	[0.01–100]Hz
Quantity	2	2

✓ Limitation of the measurement:

→ Guralp sensors:

- From 0.1Hz: Electronic noise too high below
- To 50Hz: Frequency response not flat above

→ ENDEVCO sensors:

- From 10Hz: Electronic noise to high below
- To 100Hz: Frequency response not flat above

✓ One Guralp velocity sensor on the floor and the other one on the table to measure low frequency vibrations in the X, Y and Z directions (0.1Hz to 50Hz)

 \checkmark One ENDEVCO accelerometer on the floor and the other one on the table to measure medium frequency vibrations in the Z directions (10Hz to 100Hz)

 \checkmark One microphone on the floor to study acoustic effect on the table behaviour

 \checkmark Simultaneous measurements of the 4 sensors in the Z direction

Table-to-ground ratio of vertical motion

✓ Up to 35Hz: Table-to-ground ratio around 1
→ No big amplification or damping done by the table

✓ Above 35Hz: Increase of table-to-ground ratio
→ Ground motion amplification done by the table up to a factor 11 at 68Hz

Coherence between the table and ground vertical motion

✓ Below 0.1Hz: Fall down of the coherence due to geophones electronic noise

✓ **Up to 35Hz:** Coherence very good (except around 1Hz because of geophones electronic noise)

 \checkmark Above 35Hz: Fall down of the coherence because of the big ground motion amplification by the table

Expected table vibrations on the ATF2 floor

- ✓ Data taken: File 011
- ✓ Amplitude spectral Density (ASD) of the table vibrations at ATF2
 - = Transfer function of the table*ASD of ATF2 floor vibrations

Expected table vibrations on the ATF2 floor

✓ Integrated displacement Root Mean Square (RMS):

✓ Difference of integrated displacement RMS from 0.1Hz to 50Hz: 3.3nm₂!!!

Expected table vibrations on the ATF2 floor

✓ Difference of integrated displacement RMS between the table and the floor = integrated displacement RMS of the table - integrated displacement RMS of the table

13

Conclusion of these measurements

✓ Difference of integrated displacement RMS from 0.1Hz to 50Hz: 3.3nm!!!

✓ Relative motion tolerance between Shintake monitor and final magnets:
6nm

→ Good results of relative motion obtained but are worse in reality:

Coherence not at 1 up to 50Hz (but at 1 up to 35Hz): Need to know how to calculate the relative motion which takes into account the phase

➢ Ground motion at ATF2 measured up to 50Hz: Need to measure it up to 100Hz because ground motion amplification is from 35 to 100Hz

➢ Necessity to understand why the first eigenfrequency is at so low frequency and to try to push it at higher frequency

 \rightarrow Goal: To get a good coherence at least up to 50Hz

Why does the table amplify ground motion at low frequency?

✓ First eigenfrequency table guaranteed to be at 230Hz by TMC company

✓ Ground motion amplification on the table begins at 35 Hz with its maximum at 68Hz

✓ Reason: probably because of the way the table is put on the floor

 \rightarrow Rocking motion of the table on the support

 \rightarrow Insufficient rigidity at the contacts of intermediate supports

Why does the table amplify ground motion at low frequency?

✓ For the rocking motion of the table : 3 supports put instead of 4

Transfer function not the same: 1 more eigenfrequency at 40Hz

 \rightarrow Confirm that ground motion amplification is due to the way the table is put on the floor

Results not better with 3 supports instead of 4

Why does the table amplify ground motion at low frequency?

- ✓ TMC company: Table supported at 4 points to find the first eigenfrequency at 230Hz
 - But no details about supports used to do their tests
- \rightarrow TMC company has been contacted
 - > They will respond us soon about supports for honeycomb table
- ✓ But in TMC internet site, rigid supports suggested for honeycomb table
 - Low price, adjustable height
 - > In the installation set-up of these supports:
 - \rightarrow Need to fix these supports on the ground with bolts
 - \rightarrow Need to fix these supports on the table with bolts

http://www.techmg.com/products/posts/4postsystem.htm

Rigidity at the contacts of intermediate supports

4-Post Systems with Tiebars

Gimbal Piston™ Isolators and Rigid Suppor

General conclusion and future prospects

✓ First good results of relative motion obtained with the honeycomb table and our supports but with the assumption that coherence is at 1

> Necessity to find a better way to put the table on the ground in order not to have ground motion amplification anymore and to have a coherence at 1 at least up to 50Hz

\rightarrow For that:

- Necessity to have very rigid supports
- > Necessity to fix supports on the ground with bolts
- Necessity to fix the table on these supports with bolts

 \checkmark Try to make better home-made supports and to fix as described below supports on the ground and the table on supports

 \checkmark Or we can buy supports at TMC company and fix them on the ground