Optimization of Guinea-Pig grid for ILC feedback simulations

Maria del Carmen Alabau, Philip Bambade, Guy Le Meur

29th March 2007

The luminosity issue: flat beams

Beam-beam deflection

Beam-beam interaction focuses (defocuses) the beams.

In addition, if there is an <u>offset</u> between the beams, there is a net force that <u>deflects</u> the trajectories.

out-going angle is the main signal for the IP position feedback system

Sources of magnet displacements

Magnet displacements introduce offsets at the IP

Source of magnet displacements: ground motion

* See e.g. A. Seryi, Ground Motion and Vibration Issues for Accelerators, Proceedings of the 2001 PAC, Chicago

Beam-based IP position Feedback Simulation

Amplitudes of the IP y-offsets:

Train frequency:

- ~ hundreds of nm
- Bunch-to-bunch frequency:
- ~ fraction of σ_v

Structure of the beam:

Beam-beam deflection IP position feedback system

1. Measure the out-going angle

2. Predict the offset between the beams

3. Correct the next bunch

Beam-based IP position Feedback Simulation

Beam-beam deflection IP position feedback system

1. Measure the out-going angle

2. Predict the offset between the beams

3. Correct the next bunch

Beam-Beam Feedback Simulation with Realistic Errors in the BDS (1)

Beam-based IP position feedback simulation using the code PLACET:

- Misalignment of the elements of the BDS applying ground motion model B* every 0.2 seconds, for each train (without misalignment inside a train)
- Simulations for successive time intervals of ground motion applied
- Track the beam through the BDS
- Collision with GUINEA-PIG to obtain the outgoing angle used for the correction
- Correct the beam position with the kicker located just after the final doublet

repeat bunch-to-bunch

* See e.g. A. Seryi, Ground Motion and Vibration Issues for Accelerators, Proceedings of the 2001 PAC, Chicago

Beam-Beam Feedback Simulation with Realistic Errors in the BDS (2)

Effect of the ground motion in the lattice elements:

<u>Misalignment of the elements</u> with ground motion model B (50 seeds) (ground motion applied at successive time intervals)

Misalignment difference of each element in the e⁻ line respect to the same element in the e⁺ one

Beam-Beam Feedback Simulation with Realistic Errors in the BDS (3)

Feedback response:

Feedback simulation with ~50 seeds after ground motion applied during 1second

e+e-

e⁻**e**⁻

Feedback simulation for ground motion during different time intervals 9

Beam-Beam Feedback Simulation with Realistic Errors in the BDS (4)

Feedback simulation after ground motion applied during different time intervals: (average luminosity for ~50 seeds)

Correction for the e⁻e⁻ mode is slower compared with e⁺e⁻, but the average luminosity over a full train can be recovered

Beam-Beam Feedback Simulation with Realistic Errors in the BDS (5)

Feedback simulation done for:

- e+e- and e-e-

- ~8 different successive time intervals of ground motion

- 50 seeds each lattice misalignment

Correction done bunch-to-bunch for 200 bunches: 200 collisions simulated with Guinea-Pig

Total: the order of 100000 collision simulations

Beam-Beam Feedback Simulation with Realistic Errors in the BDS (5)

Correction done bunch-to-bunch for 200 bunches:

200 collisions simulated with Guinea-Pig

if 1 min / collision $\implies \sim 8$ h

if 3 min / collision \implies ~ 24 h

Time depends on size and precision grid: Need to optimize the grid according to the offset between the beams

Grid parameters for 0 nm offset (e+e-)

cut_x = 3 * sigma_x.1 cut_y = 6 * sigma_y.1 cut_z = 3 * sigma_z.1

Ζ

Number of cells

n	_x =	32
n_	_y =	128
n_	_z =	24

70 nm / 128 cells:

size_cell(y) ~ (1/10) σ_v

Grid parameters for 0 nm offset (e+e-)

Size of the grid (half of the grid)

Grid parameters for vertical offset between the beams:

Grid parameters for vertical offset between the beams:

- Increase the cell size
- Increase y grid size: to loose maximum ~1% of the particles

Grid parameters for e-e- collisions: need more time

0 nm vertical offset (e-e-)

disruption

Disrupted angle 8 times the e+e- one:

Vertical grid size 8 times the e+e- one

cut_x = 3 * sigma_x.1 cut_y = 48 * sigma_y.1 cut_z = 3 * sigma_z.1

To maintain the same precision:

Number of cells x 8

17