

Luminosity Spectrum Extraction & related systematics

Filimon Gournaris

University College London

Stewart T. Boogert Royal Holloway, University of London

> 29/3/2007 LAL Orsay

F.Gournaris

(our) Motivation : Top threshold @ ILC

- The top threshold (CME~2M_t) at the ILC offers a unique environment to study QCD :
 - Large top quark mass (M_t~172 GeV) allows precise perturbative QCD calculations of its properties
 - No hadronization effects, clean decay channel allows unique QCD studies to be made (e.g. top spin physics)
- At top threshold can also extract information about α_s and top-Yukawa coupling.

ILC aim is 3 parts in $10^4 \sim 50$ MeV precision. (LHC aim ~1-2 GeV)

- One of the main uncertainties in this measurement comes from the machine's luminosity spectrum !
- Various energy loss mechanisms give a complicated luminosity spectrum at the ILC
- Must be understood and measured precisely for top quark (+ most other threshold) precision physics
 @ the ILC !!

2

Luminosity Spectrum

- Centre of mass energy variation, three main sources:
 - Initial State Radiation (ISR)
 - Calculable to high precision in QED
 - Beamstrahlung

٠

- Beam-beam effect due to strong bunch magnetic fields, causing electrons to radiate.
- ~1%
- Accelerator Beam Spread
 - Intrinsic machine energy spread, typically (Gaussian !?) ~0.1 %
- Beamstrahlung can only be simulated (GuineaPig/CAIN) or described by parameterization (based on outcome of simulation)..

Bhabha Acolinearity

- Bhabha scattering to monitor lumi spectrum
 - e⁺e⁻-> e⁺e⁻(n)γ
 - High enough rate (statistics)
- Two approximate reconstruction methods:
 - Only uses angles of scattered electron and positron
 - Based on assumption of single photon radiation
 - Frary-Miller

$$x = 1 - \frac{\theta_A}{2\sin\bar{\theta}}$$

- K. Mönig

$$x = \sqrt{\cot \frac{\theta_p}{2} \cot \frac{\theta_e}{2}}$$

Simulation (for spectrum extraction)

- Simulation :
 - Define accelerator beam (linac simulation?)
 - Simulate beam-beam effects
 - Get beamstrahlung from GuineaPig and/or parametrize (CIRCE)
 - Will come back to this !
 - Generate bhabha scattering with BHWIDE (BHabha WIDE angle monte carlo)
 - Apply beam-beam effects to bhabhas
 - Analyze / Extract spectrum

Luminosity Spectrum Extraction

- For extraction of spectrum need to use parameterization
 - Only use beamstrahlung spectrum ignoring possible systematics related to beam-beam interactions (e.g. EM deflections)
- Generate bhabhas, boost according to luminosity spectrum
- Create a family of histograms with linear variations in lumi spectrum parameters
- Perform χ^2 fit of family of histograms with variation in parameters to measured spectrum
- Most of difference in x_{reco} vs x_{true} comes from the single photon approximation

6

Extraction related systematics

- Physics based
 - EM deflections of bhabhas due to opposing bunch field
 - Migration of events in/out of detector acceptance
 - Correlations between two beams
 - Variation in beam parameters with time (when does it start hurting?)
 - Beam jitter
 - ... detection

Most of these important to check, if we want to use previous extraction method using parameterization

- Simulation based
 - Computational parameters in GuineaPig
 - No of cells
 - No of macroparticles etc..
 - Fitting related systematics
 - * $\chi^2\,$ vs MLL fits (binned/unbinned)
 - Simultaneous fit of both electron/positron spectra

These are important anyways !

EM deflections

• For Bhabha sample of 500k events at 350 GeV and θ_{prod} > 7^o

EM deflections II

• Probably not significant for our studies, but still under investigation.

22

24

TESLA TDR

Tracker resolution

20

0.005

0

8

10

12 14

(preliminary) GuineaPig tests

- Using different computational grids
 - (e.g. comparing <E> difference to the base one) VERY PRELIMINARY!

Short	Long	30000	100000	Т3	T10	Loose	Tight
n_[x,y,z]/2	n_[x,y,z]*2	less macroparticles	more macroparticles	less timesteps	more timesteps	cut_[x,y,z]/1.5	cut_[x,y,z]*1.5

LAL - 29/3/2007

Fitting, parameters and sensitivity to the top

- Hard fit to make!
 - Numerical convolution of beta function (CIRCE-beamstrahlung) with Gaussian (beamspread)

$$f(x;a_i,\sigma) \sim$$

 $(a_0\delta(1-x) + (1-a_0)x^{a_2}(1-x)^{a_3}) * g(x;\sigma)$

	Nominal	Low-Q	Large-Y	Low-P	High-L
a_0	0.560	0.653	0.759	0.535	0.547
a_2	15.326	35.026	12.54	7.561	6.171
a_3	-0.715	-0.800	-0.707	-0.632	-0.624
σ_E [GeV]	0.177	0.175	0.175	0.177	0.177
$\langle E \rangle$ [GeV]	173.67	174.66	174.10	171.64	171.04

Summary

- Precise luminosity spectrum extraction important for many physics studies at ILC.
- Different systematics are being checked to determine the feasibility and expected precision of current lumi extraction technique (Frary-Miller/Mönig)
- Through this process, GuineaPig is also being tested for precision and stability in computational parameter configuration space.
- Need to repeat the above exercise by including fits to the lumi spectrum and look for variation in fit parameters..
- (Always) much more work to be done. But analysis framework now in place to provide a systematic way of 'production' analysis of bhabha / lumi spectrum / related issues !