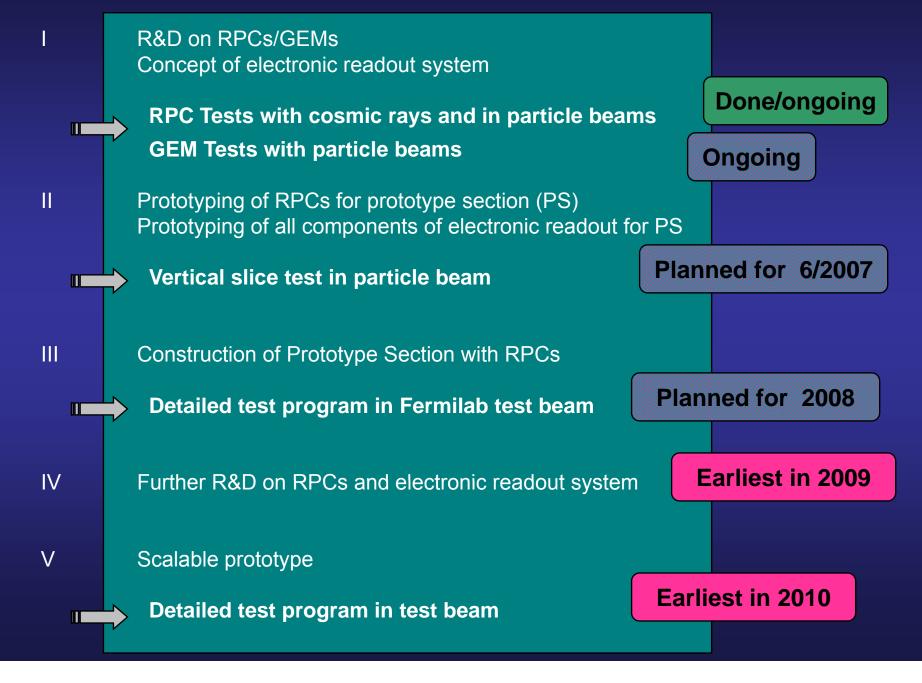
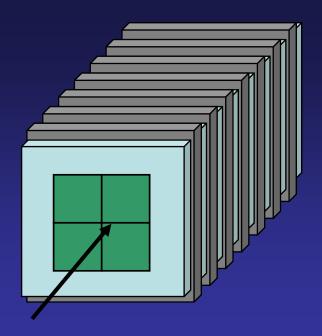
DHCAL Progress Report



José Repond Argonne National Laboratory

CALICE Technical Board Review, DESY, April 19 – 20, 2007

Staged approach



Vertical Slice Test

Uses the 40 DCAL ASICs from the 2nd prototype run

Equip ~10 chambers with 4 DCAL chips each

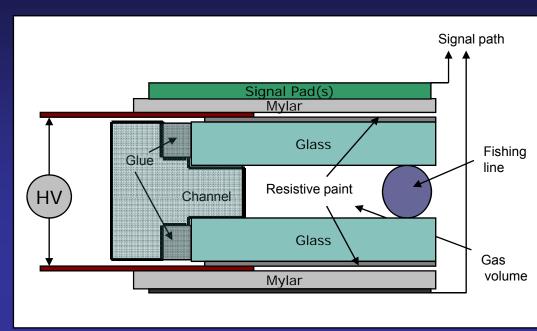
256 channels/chamber ~2500 channels total

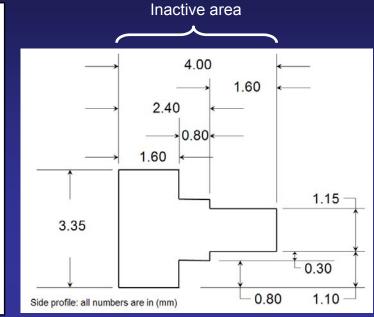
Chambers interleaved with 20 mm copper - steel absorber plates

Electronic readout system (almost) identical to the one of the prototype section

Tests in MTBF beam planned for Spring 2007

 \rightarrow Measure efficiency, pad multiplicity, rate capability of individual chambers


 \rightarrow Measure hadronic showers and compare to simulation

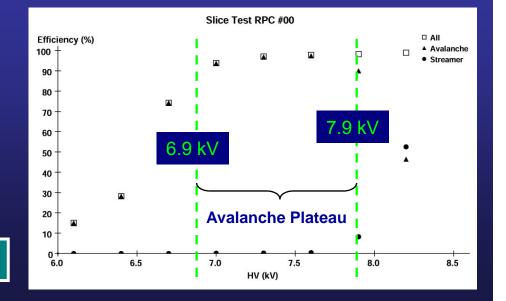

Validate RPC approach to finely segmented calorimetry Validate concept of electronic readout

Responsibilities and colla	Argonne	
Task	Responsible institutes	
RPC construction	Argonne, (IHEP Protvino)	BOSTON
GEM construction	UTA	UNIVERSITY
Mechanical structure (slice test)	Argonne	
Mechanical structure (prototype section)	(DESY)	(DESY) CALLE
Overall electronic design	Argonne	Calorimeter for ILC
ASIC design and testing	FNAL, Argonne	the France Halls
Front-end and Pad board design & testing	Argonne	🛟 Fermilab
Data concentrator design & testing	Argonne	
Data collector design & testing	Boston, Argonne	THE UNIVERSITY OF IOWA
Timing and trigger module design and testing	FNAL	
DAQ Software	Argonne, CALICE	
Data analysis software	Argonne, CALICE	ИФВЗ
HV and gas system	Iowa	
Beam telescope	UTA	The University of Texas ARLINGTON.

RPC construction and testing (US)

New design with simplified channels

Argonne


1st chamber assembled and tested

 → Excellent performance
 Thickness ~3.5 mm (w/out pads)

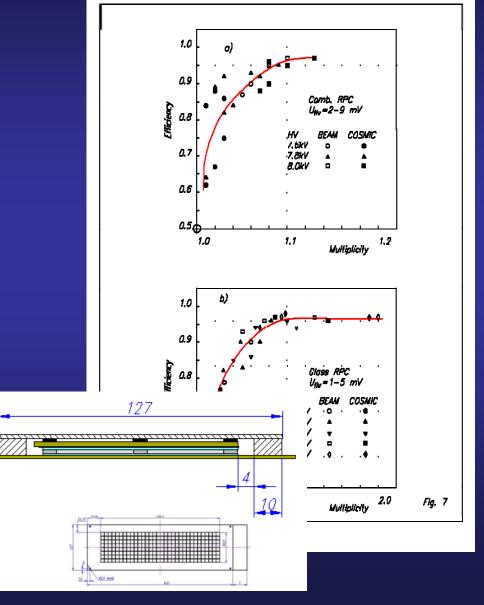
 2nd chamber assembled and tested

 → Excellent performance
 3rd - 6th chamber being assembled

Material in hand for remaining chambers

RPC construction and testing (Russia)

Measurements with 1-glass plate chambers


Pad multiplicity ~1.1 for an efficiency of 95% Confirms results obtained at ANL Long term tests ongoing

Constructed 4 chambers with 8x32 pads

One sent to Lyon for testing Others waiting for MAROC chip + FE-board Successfully tested with strip readout

Preparation for 1 m² chamber construction

Preparation of facility Cosmic ray test stand being assembled Design being finalized

GEM construction and testing

Chamber characteristics run

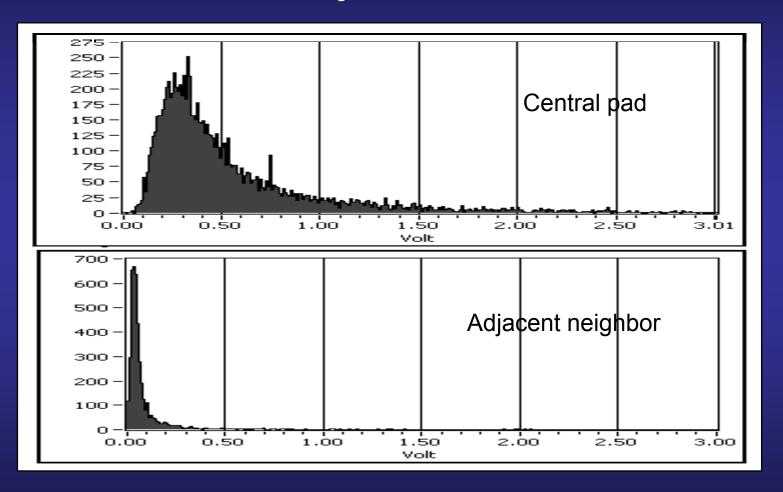
30 x 30 cm² foils from 3M
32 1 x 1 cm² readout pads
Analog readout with FNAL front-end and ADLink ADC card

Data runs

As the secondary user March 21 - 27As the primary user April 4 - 10

Goals

Measurements of gains, efficiency, pad multiplicity, noise rate, rate capability and uniformity of the response as function of gas mixture and HV



After increase of Voltage (drift gap) \rightarrow needed to reduce charge collection time

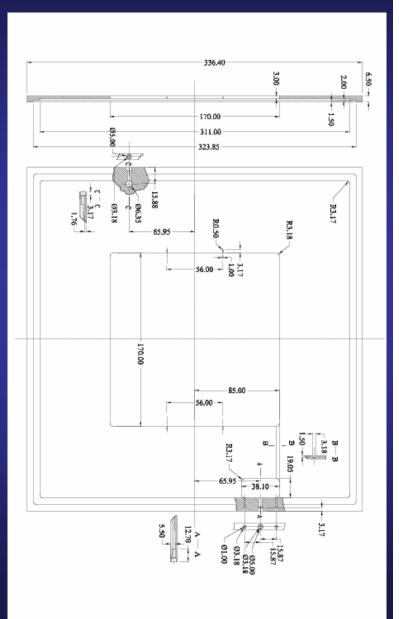
Data being analyzed: additional data taking needed?

Preparation for Slice Test

GEM foils

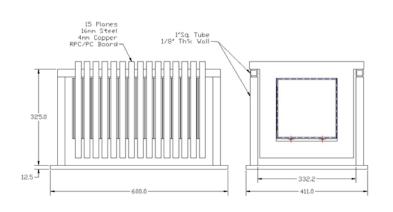
4 sets of 3M foils HV tested

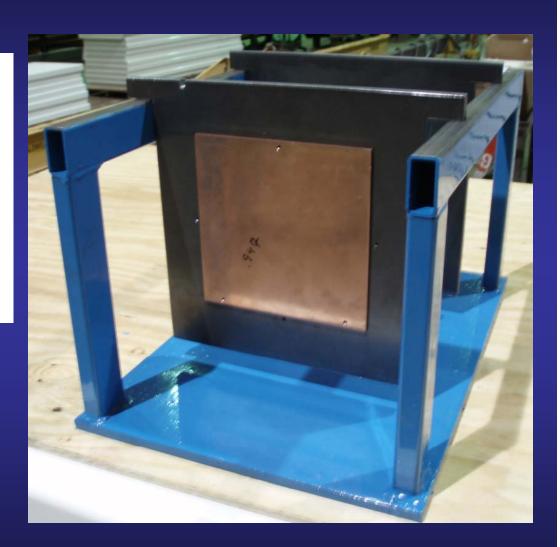
2 chambers


Will be equipped with DHCAL readout electronics All components identical to RPC electronics 16 x 16 channels/chamber

Waiting for FE-board...

2 chambers

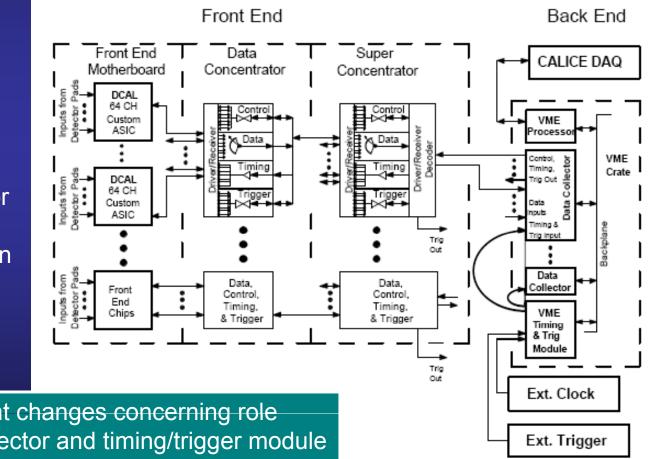

Will be equipped with KPiX chip (not a slice test!) 8 x 8 channels/chamber



Mechanical: Stack for Vertical Slice Test

Stack is assembled

Design accommodates 20 x 20 cm² RPCs as well as 30 x 30 cm² GEMs



Electronic Readout System for Prototype Section

40 layers à 1 m² \rightarrow 400,000 readout channels More than all of DØ in Run I

- Front-end ASIC
- Pad and FE-board
- Ш Data concentrator
- Super Concentrator IV
- VME data collection V
- Trigger and VI timing system

Some recent changes concerning role of data collector and timing/trigger module

DCAL chip

Design

- \rightarrow chip specified by Argonne
- \rightarrow designed by FNAL

1st version

- \rightarrow extensively tested with computer controlled interface
- \rightarrow all functions performed as expected

Redesign

- \rightarrow decrease of gain by factor 20 (GEMs) or 100 (RPCs)
- \rightarrow decoupling of clocks (readout and front-end)

2nd version

→ submitted on July 22^{nd} → 40 chips in hand

Test board

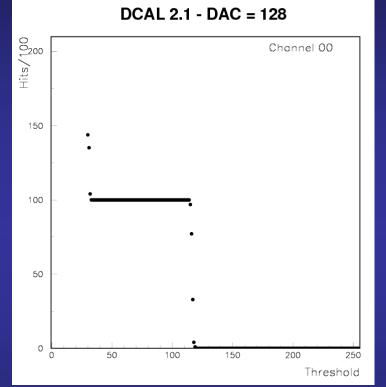
- \rightarrow redesign of test board (changes in pin layout etc.) complete
- \rightarrow boards fabricated
- \rightarrow chip mounted on test board

Testing (1/40)

 \rightarrow tests ~completed

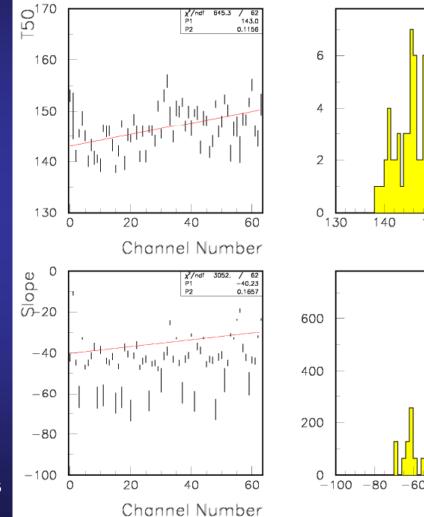
CALICE Calorimeter for ILC

Reads 64 pads Has 1 adjustable threshold Provides Hit pattern Time stamp (100 ns) Operates in External trigger or Triggerless mode

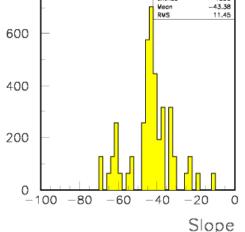

DCAL2 Testing I: Internal pulser

102 64

146.4

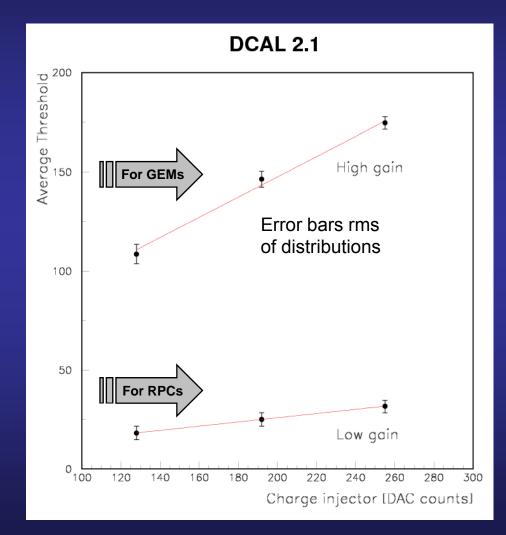

Entries

Threshold scans...

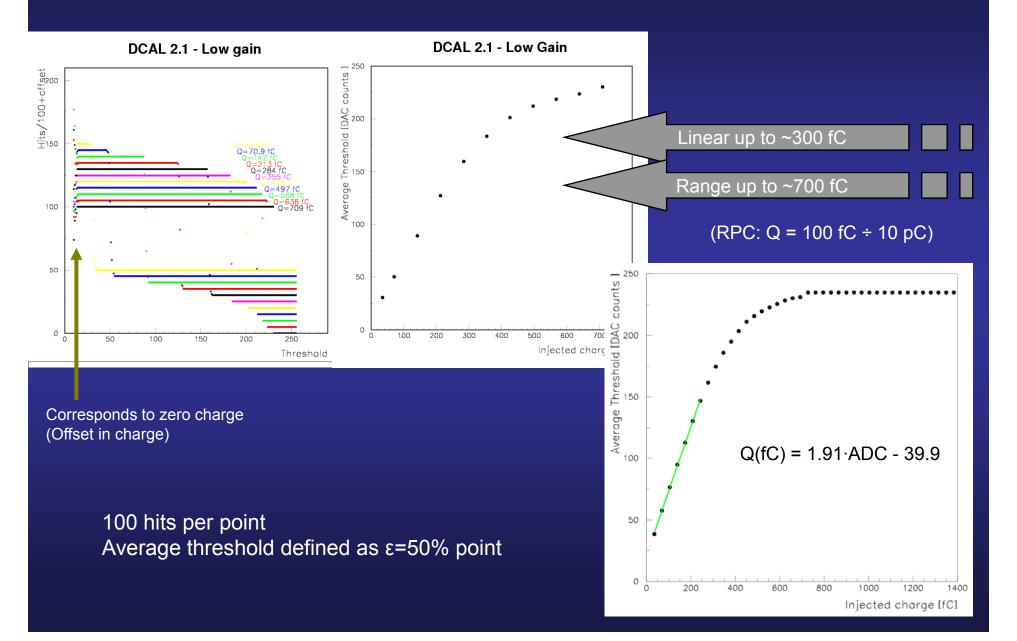

All channels OK, except Channels #31/32 show some anomalies (understood, no problem)

DCAL 2.1 - DAC = 192H

Mean RMS 3.990 150 160 170

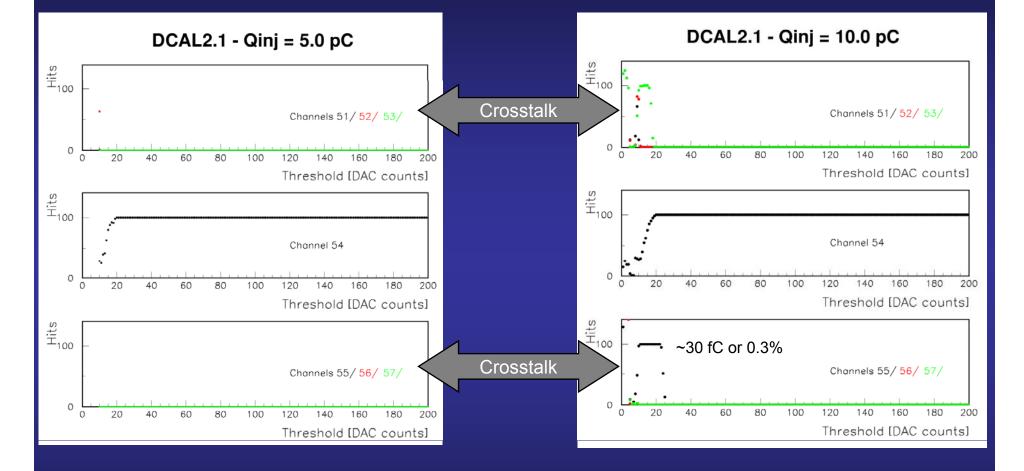


DCAL2 Testing II: Internal pulser


Ratio of high to low gain

 $R = 4.6 \pm 0.2$

(roughly as expected)



DCAL2 Testing III: External pulser

DCAL2 Testing IV: external pulser

Chips can be used for vertical slice test Small modifications still necessary for production

Pad- and Front-end Boards I

New Concept

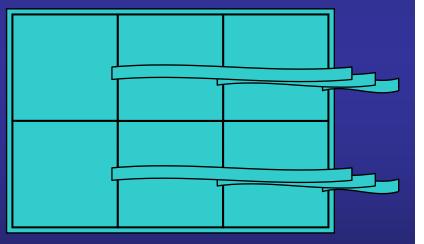
Split old 'Front-end board'

Pad board

FE board

'front-end board' highly complex and difficult blind and buried vias + large board => (almost) impossible to manufacture split into two boards to eliminate buried vias

Pad boards

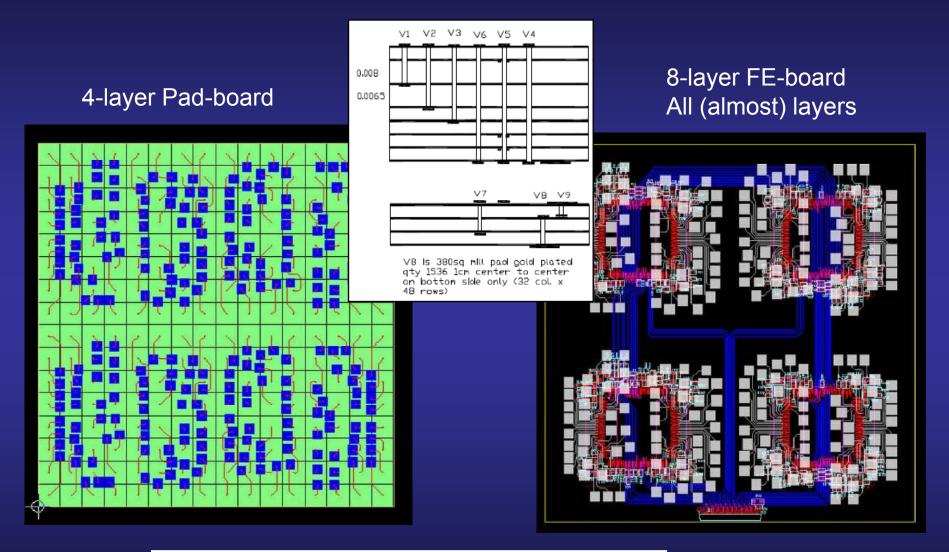

four-layer board containing pads and transfer lines can be sized as big as necessary relatively cheap and simple vias will be filled

Front-end boards

eight-layer board 16 x 16 cm² contain transfer lines, houses DCAL chips expensive and tough to design

Connections

board to board with conductive glue on each pad cables for connection to data concentrators



Pad- and Front-end Boards II

Design completed \rightarrow most intricate so far by Argonne group

Pad- and Front-end Boards III

Front-end board: fabricated and (partly) assembled Test-board (computer interface): fabricated and assembled Testing software: to be adapted from previous DCAL2 tests

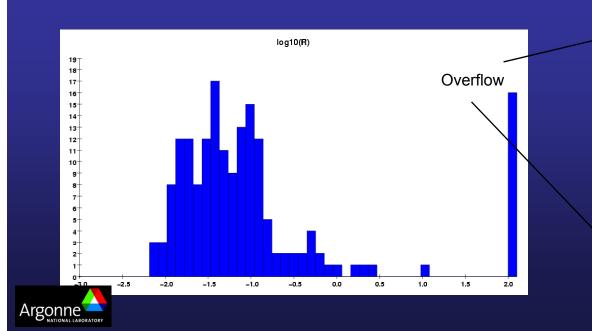
> The very first minute of life was a complete failure. Nothing worked. The signals were wrong everywhere. The fuses were blowing, couldn't talk to the PC interface board, cables were wrong, signals backward and scrambled, nothing worked.

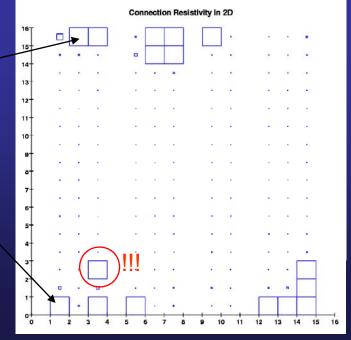
So, everything was normal and as expected.

Tests started this week FE-board showing signs of life..

Pad-board: design completed Fabrication: received *reasonable* quotes

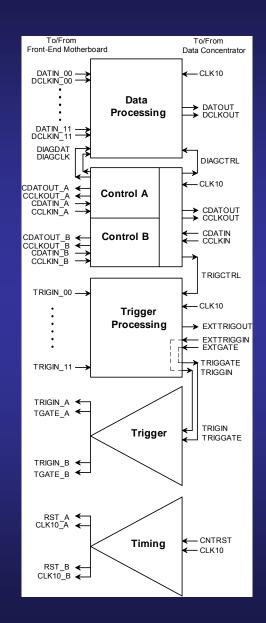
Waiting for OK from Front-end board




Gluing Tests

Performed test with test boards Glued two boards to each other → strips of Mylar for constant gap size

Resistance <~0.1 Ω Glue dots small (~2 mm) and regular Edges lifted off \rightarrow non-conductive epoxy

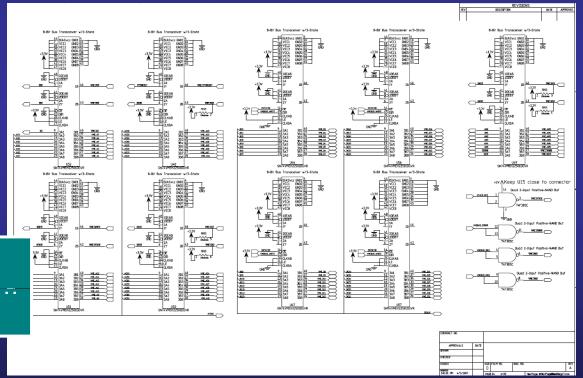


Data concentrator boards

Design completed **Boards fabricated** 1/10 board assembled

Test board fabricated and assembled Tests to begin next week...

Timing and trigger module


Provides clocks and trigger signals to individual DCOL boards

Schematic completed

Need 1 module for both the

Vertical Slice Test and the 1 m³ Prototype Section

Board layout ongoing Fabrication next week... F/W 25% complete

Data collector boards

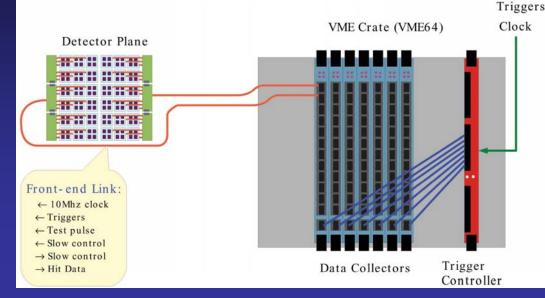
Functionality

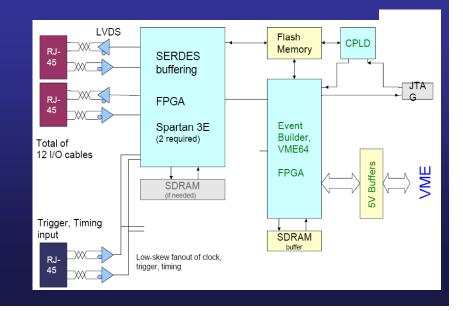
Receives data as packets

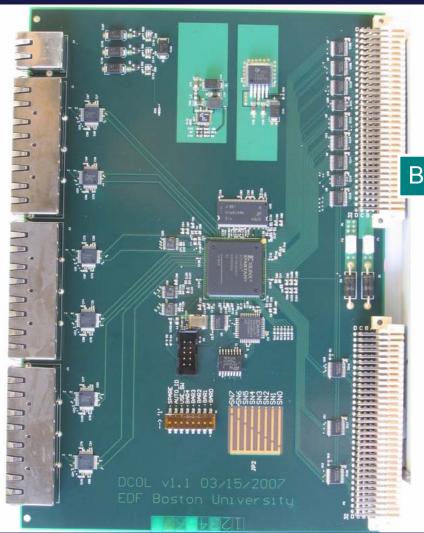
Timestamp (24 bits) + Address (16 bits) + Hit pattern (64 bits)

Groups packets in buffers (by matching timestamps)

Makes buffers available for VME transfer


Monitors registers (scalars)


Provides slow control of front-end


Allows read/write to DCAL chips or data concentrator boards

Need

unit for Vertical Slice Test
 units for Prototype Section

Test board purchased Testing software ready Testing begun...

Board fabricated and assembled


Beam telescope, HV, and gas

CALICE Calorimeter for ILC

Beam telescope

6 counters $(3 \times (1 \times 1 \text{ cm}^2) + 1 \times (4 \times 4 \text{ cm}^2) + 2 \times (19 \times 19 \text{ cm}^2)$ Mounted on rigid structure Counters and trigger logic tested \rightarrow A.White

HV modules

Need separate supplies for each chamber Modules (from FNAL pool) being tested

With additional RC-filter perform similarly to our Bertan unit in analog tests (RABBIT system) Digital tests satisfactory too

Gas system

Need manifold for 10 chambers (in hand!) Will purchase pre-mixed gas (quote in hand)

Based on

VME hardware interface and PCI-VME interface CERN HAL library CALICE DAQ framework (→ combined data taking) ROOT running on CERN Linux OS

Two configurations

Vertical Slice Test with 10 x 4 ASICs or 2560 channels Prototype Section with 40 x 144 ASICs or 400k channels

Data archived for offline analysis

Contains: run metadata, hit patterns & addresses & timestamps Configuration data stored in SQL database Data will be converted to LCIO format

DAQ software will be used

For hardware debugging In cosmic ray and charge injection tests In FNAL test beam

Status

HAL based testing and debugging system running Toy version of CALICE DAQ running with *old* VME hardware

Next steps

Define operations for new hardware Define data structure (binary files) Define data structure (offline)

Data Analysis

For Vertical Slice Test only

Online histograms

Important in debugging phase Part of CALICE DAQ software DHCAL specific plots to be added

Σ_{all}hit versus time
Σhit versus chamber
2dhisto of chamber hits (all layers)
2dhisto of chambers hits (per layer)
{Chamber efficiency and pad multiplicity}

II Analysis of binary files

Important in debugging phase Event display (to be adapted from CALICE-AHCAL) Track segment finder

III Conversion to LCIO

Standard for LC data bases Conversion to be done by CALICE expert (not urgent for VST, but necessary for later tests)

Programming will start soon...

Track Segment Finder

Loops over layers 1 - 8 Loops over hits in layer i Determines #neighboring hits N_i Searches for aligned hits in layer i+2,3,4,5 Determines #neighboring hits around aligned hit

 N_{i+2} , N_{i+3} , N_{i+4} , N_{i+5} (N_i = 0 ...no aligned hits)

Looks for aligned hits in layer i+1 Determines #neighboring hits N_{i+1}

Efficiency of layer i+1

 N_{i+1} > 0.and. N_{i+2} > 0(.and. N_{i+3} > 0)

N_{i+2}>0(.and.N_{i+3}>0)

Pad multiplicity of layer i+1

 N_{i+1} , for $N_i=1.and.N_{i+2}=1(.and.N_{i+3}=1)$

Component	February	March	April		Мау		June
ASIC	Complete testing Provide new packing scheme Order 40 additional				Test	Test with cosmic rays	Move to MT6 Test in test beam
Gluing	Test with regular epoxy	Test with conductive epoxy	Test with real b	Develop gluing procedure Test with real boards Glue all boards			
Pad boards	Specify dimensions Complete design		Order for RPCs	5			
Front-end boards	Complete design Order 15	Fabricate Assemble	Test	Test			
Interface board (to test FE-boards + ASIC)	Complete design	Fabricate Assemble					
Data concentrator		Complete design Fabricate Assemble	Test	l v	l /ersior	n from	4/9/2007
Data concentrator test board		Complete design Fabricate Assemble					
Data collector	Complete design Acquire crates	Fabricate Assemble	Test	-			
Data collector test board		Acquire Write software					
Timing & trigger module	Discuss with FNAL	Design	Fabricate Assemble Test				
Software	Acquire PC	Complete standalone development (with 'old' VME card)	Complete deve DCOL	lopment with			
RPCs	Complete #1	Test #1 Test #2	Buil#3-6 Test #3-6		Build #7-10 Test		
Offline	Propose concept	Develop plan	Write software				

Comparisons...

Identical

	VST	PS	ILCD
RPCs	20 x 20 cm ²	32 x 96 cm ²	Variable
DCAL chips	64 inputs No power pulsing	64 inputs No power pulsing	> 64 inputs???
Front-end boards	4 ASICs/board No optimization in thickness/cost	4 ASICs/board No optimization in thickness	>4 ASICs/board Token rings?
Pad boards	16 x 16 cm ²	32 x 48 cm ²	Variable
Data concentrator	Input = 4 ASICs	Input = 12 ASICs	?
Super concentrator	Not used	Input = 6 Data concentrator	?
Data collector	12 inputs	12 inputs	?
Timing module	1 unit	1 unit	Needed?
н	1/chamber	1/3 chambers	?
Gas lines	1/chamber	1/3 chambers?	?
	Conservative design	Some optimization	Highly optimized

Conclusions

Going full speed!!!

- Vertical slice test

Concentrated effort with

monthly meetings (whole effort) weekly meetings (ANL group)

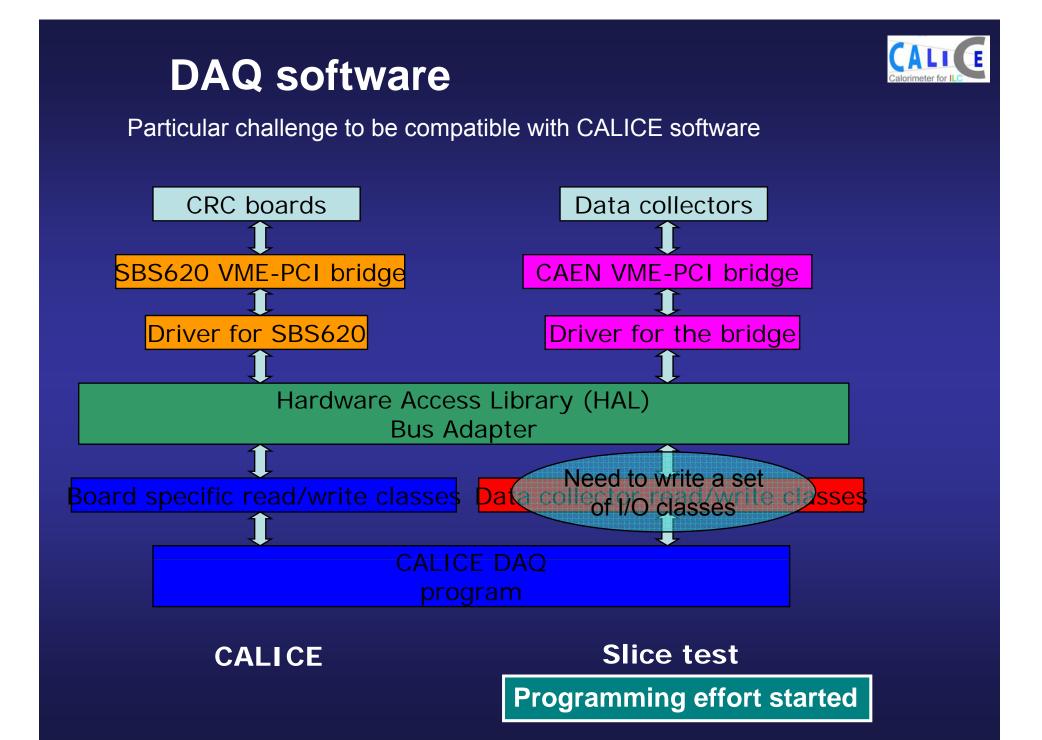
All parts coming together (no apparent late comer)

Goal Cosmic ray test sin May 2007 Measurements in test beam in June 2007

- Prototype section

Expensive! (New revised cost estimate soon) Funding appears possible. This year will receive

\$250k + \$175k for RPC+electronics \$50k + \$? for GEM R&D


Goal \rightarrow RPC stack in 2008

P.S. Do we need the prototype section?

Marty Breidenbach Adam Para GEANT needs cross sections, not calorimeter measurements Gas calorimetry is an old art (we can't learn anything new) Shower size measurements already exist

MINOS ~ TCMT 4 x 100 cm² strips versus 1 x 1 cm² pads Factor 400 !!! Scintillator versus gaseous TCMT RPC pad board (to scale)

Backup Slides

Funding

LCRD funds for 2006

RPCs (ANL, Boston, Chicago, Iowa)	\$98k
GEMs (UTA, Washington)	\$60k

Supplemental LCRD funds for 2006/7

Avai	lab	le [.]	fun	ds

\$1,200k/year?

Submitted pre-proposal for RPC/GEM DHCAL

Requested \$1,200k for 2006 ~\$800k for 2007

- 2006 build RPC-DHCAL continue R&D on GEMs
- 2007 test RPC-DHCAL at MTBF build GEM stack
- 2008 test GEM-stack

DOE asked us to submit proposal for \$500k/year (done)

Costs and Funding

A) Slice test is funded by LCDRD06, LDRD06 and ANL-HEP, and Fermilab funds

B) Prototype section not yet funded, but...

Stack	Item	Cost	Contingency	Total
RPC stack	M&S	607,200	194,600	801,800
	Labor	243,075	99,625	342,700
	Total	850,275	294,225	1,144,500
GEM stack [*]	M&S	400,000	165,000	565,000
* Reusing most	Labor	280,460	40,700	321,160
of the RPC electronics	Total	680,460	205,700	886,160
Both stacks	M&S	1007,200	359,600	1366,800
	Labor	523,535	140,325	663,860
	Total	1,530,735	499,925	2,030,660

Proposal for supplemental funds for \$500k/year over two years submitted to DOE Help from ANL (LDRD), ANL-HEP, FNAL expected...