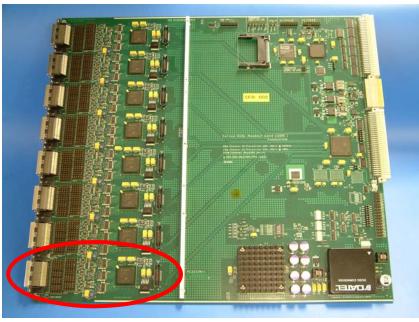
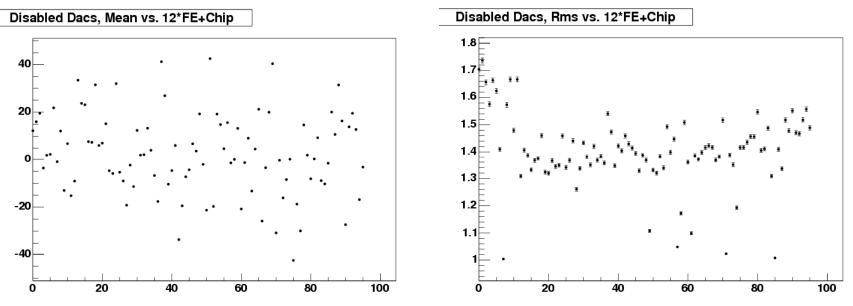

DAQ Readiness


Paul Dauncey

CRC requirements

- Need 13 CRCs total
 - ECAL crate requires 6 CRCs
 - AHCAL crate requires 7 CRCs
 - 8 Front Ends/CRC (FE = connector)
 - FE count is critical
- ECAL has (up to) 60 PCBs
 - 30 full PCBs; one CRC FE each
 - 30 half PCBs; one CRC FE per pair
 - 45 FEs total out of $6 \times 8 = 48$ in crate
- AHCAL, TCMT and trigger in other crate
 - AHCAL has 38 layers, one CRC FE each, via two cables
 - TCMT needs 2 FEs
 - Trigger data occupy 2 FEs (equivalent; can be non-functional)
 - Veto scintillator, PIN diode monitoring need 3 FEs
 - 45 FEs total out of $7 \times 8 = 56$ in crate

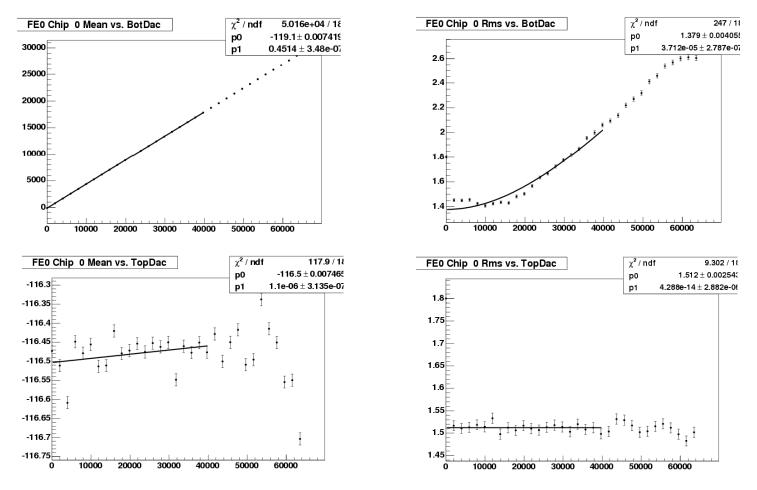
DAQ Readiness


One FE

CRC hardware repairs

- Several FEs found to have faults during CERN run
 - Enough fully functional FEs to read everything in 2006, but not in 2007
- Matt Warren (UCL) gone through repair program; two main tests
 - "Battery pack" test
 - Constant 1.5V input to all channels on one FE in parallel
 - Pack moved by hand to other FEs in turn during run
 - Done for link array at both full (ECAL) and half-full (ECAL/HCAL) PCB settings
 - Internal DAC scan test
 - Internally loop back on-CRC DAC into ADCs
 - Scan over full DAC range, measure electronics calibration
 - Turn off DACs for pedestals and noise
- 14 out of 16 CRCs were tested; repairs made to 11 of these
 - Other 2 CRCs were not available
- Faults found were very varied
 - Several components missing; possible broken off from mishandling
 - Some bad solder joints on front connectors; again possibly due to mishandling
 - Several bad vias on PCB; required adding wires to bridge broken traces

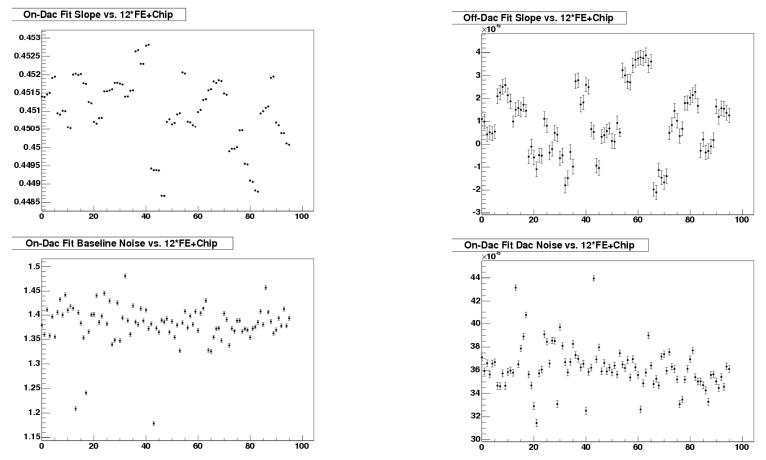
CRC pedestals and noise


- CRC has 8 FEs, each with 12 ADC channels = 96 channels total
 - Most of following plots have channel number on x axis
- Pedestal and noise are most basic properties of CRC
 - Bad channels usually show up as deviations from average value
- Plots following are e.g. SER013, which is fully functional

- Pedestals all within ± 50 ADC counts of zero (full scale $\pm 32k$)
- Noise: all with 1–2 ADC counts; ECAL noise ~6 ADC counts

CRC internal DAC test

- CRCs have two on-board DACs going to alternating ADC channels
 - Can measure response and cross-talk of each channel to neighbour
 - Measure signal and noise vs DAC value for every channel; here e.g. FE0, Ch0



19 Apr 2007

DAQ Readiness

CRC internal DAC test (cont)

• Summary of DAC responses for each channel

- Gain is uniform to better than 1%, cross-talk down by 10^{-5}
- Signal-related noise is uniform to within 10%

CRC good FE status

CRC	Post-CERN	Post-Matt
SER003	0	8
SER004	3	Dead
SER005	7	8
SER006	8	8
SER007	5	8
SER008	3	7
SER009	???	???
SER010	6	6
SER011	5	8
SER012	6	8
SER013	8	8
SER014	7	8
SER015	6	8
SER016	5	8
SER017	7	8
SER018	8	8

- SER004 destroyed by manufacturers (!) while trying to replace static-damaged FPGAs
 - Will make a new CRC but timescale unknown
- SER009 in NIU/FNAL since early 2006
 - Not tested; status unknown
- Example of use; "best" CRCs in ECAL
 - ECAL crate
 - SER003, SER005, SER006, SER007, SER0011, SER012
 - 48 functional FEs (need 45)
 - AHCAL crate
 - SER008, SER010, SER013, SER014, SER015, SER016, SER017
 - SER008 or SER010 used for trigger CRC
 - 53 functional FEs (need 44, plus 1 nonfunctional for trigger CRC)
 - SER018 spare; usable in any slot

CRC firmware status

- Firmware (almost) unchanged since CERN
- One modification to revive SER003
 - Bad connection between BE and 8MByte memory
 - Interface is 18 parallel I/O tracks; one broken
 - Bit 10 of every other channel stuck to zero
 - Affects every FE so whole CRC unusable
 - Only 16 of the 18 lines used
- Reorder in firmware so bit 10 uses one of spare lines
 - New firmware used for all other board tests; no problems
- Should consistently use new firmware throughout
 - Or might accidentally load wrong firmware into SER003
- Matt still trying "remote" (VME) boot and firmware downloads
 - SER010 will remain at UCL until nearer CERN start

Other hardware items

- TDCs: Will want to use same ones as last year
 - Significant DAQ software investment in getting them running
 - Borrowed two from CERN electronics loan pool; should not be a problem but should be sure to get them out well in time
 - Last year, soldered (!) cables to TDC board; better to use connectors this year; who will provide these?
- Cables: Checked at DESY
 - Sufficient number with no errors and available (AFAIK)
- 3TByte DAQ disk: Saw some problems related to temperature
 - Should be rack mounted this year with fans
 - But needs to be close to DAQ PCs; need rack in control room
 - Also ensure air-conditioning in control room is left on
 - Must also be cleared before start of run; are we sure all files (slw, log) are copied?
- ECAL additional PCs:
 - Stage PC was stolen; will it be needed/replaced?
 - Power PC; will it be integrated into DAQ? Must be made more reliable if so as USB failures could crash DAQ

DAQ Readiness

Software status

- No significant changes to core software since CERN
 - If it ain't broke...
- Main work has been on ScECAL and DHCAL
 - ScECAL now effectively complete but DHCAL developments ongoing
 - Need to ensure code is kept coherent and prevent multiple branches
 - Issue is that DHCAL will be running at same time as CERN
- HCAL stage is a new item
 - Communication to DAQ will have same structure
 - Actual data themselves may be different (relevant for LCIO converter also)
- Some other items to do (none time-critical)
 - Allow DAQ to use cvs code repository directly
 - Upgrade HAL ("Hardware Access Library" = VME interface) to newer version as required for DHCAL readout

FNAL issues

- Main work will be integration of new systems
 - DHCAL, although slice test will be critical to prepare for this in advance
 - Beam line components; trigger, PID, tracking: could be a large effort needed so any experience beforehand would be useful
 - HOLD timing will need to be remeasured
 - May be extra issues with DHCAL/ECAL synchronisation?
- Code tuning may be useful to optimise for change to beam timing
 - Do we want to make more use of 2min out-of-spill period; e.g. pedestals or calibration?
 - If so, substantially more work would be needed
- DAQ needs to work on US power
 - Crates are spec'ed for US power
 - PCs should be OK
 - Disk is probably OK but not confirmed
 - Note; none of these have been tested in the US

Summary

- CERN 2007 likely to be very similar to 2006 for DAQ
 - No major changes needed in h/w, f/w or s/w
- CRC faults significantly reduced
 - Great work from Matt Warren over last few months
 - Now confident that all channels can be read with fully functional FEs
- Firmware and software changes minimal
 - Coordinating parallel software developments are main issue
- FNAL will be a major change
 - Should not underestimate time needed to integrate there
 - Should not expect to plug'n'play
 - Any preparations which can be done in advance should be given priority