
BDS plans for EDR DRAFT

April 18, 2007

Plan of the talk

- **Design features** (dispersed throughout the talk)
- Strategic planning for EDR
 - overall assumptions on schedule and EDR goal
 - S4 task force planning, expanded meetings
 - S4 conclusions and recommendation
 - taking into account ongoing BDS risk analysis
- Ongoing detailed planning Work packages & resources
 - to be prepared for May GDE/LCWS meeting

DRAFT BDS in EDR 3

Schedule & EDR assumptions

- Assume *technically limited* schedule (~3year for EDR, two years for Approval phase and 7 years for construction)
- EDR planning focus on cost uncertainty reduction, & performance uncertainty reduction, i.e. :
 - design of systems at appropriate level of details
 - build and test critical prototypes to ensure performance
- For EDR, can't & don't need to complete all the work & tests to 2010. Plan to continue optimization and final design after EDR and during earlier years of construction
 - A tentative table is shown for discussion on next pages

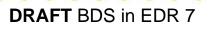
S4 strategic planning for EDR

- S4 task force went through a series of <u>expanded</u> meetings, with participation of leaders or representatives of "work packages" or of collaborations working on sub-systems
- Goal to discuss plans for EDR and beyond, to help GDE and funding agencies, via S4 and Global R&D board, to focus resources in most suitable way

S4 meetings in 2007 (expanded)

- S4 planning Jan 11
- S4 planning Feb 26
- Americas plan in 07-09, overview Feb 26
- Interaction region work, magnets & stability Mar 5
- Beam dump and collimation work Mar 12
- Crab cavity work Mar 19
- S4 conclusions Mar 26
- S4 conclusions, risk & WP Apr 1
- ATF2 work Apr 10
- IR alternatives Apr 17

agendas: <u>http://ilcagenda.linearcollider.org/categoryDisplay.py?categId=80</u> access "s4meeting"

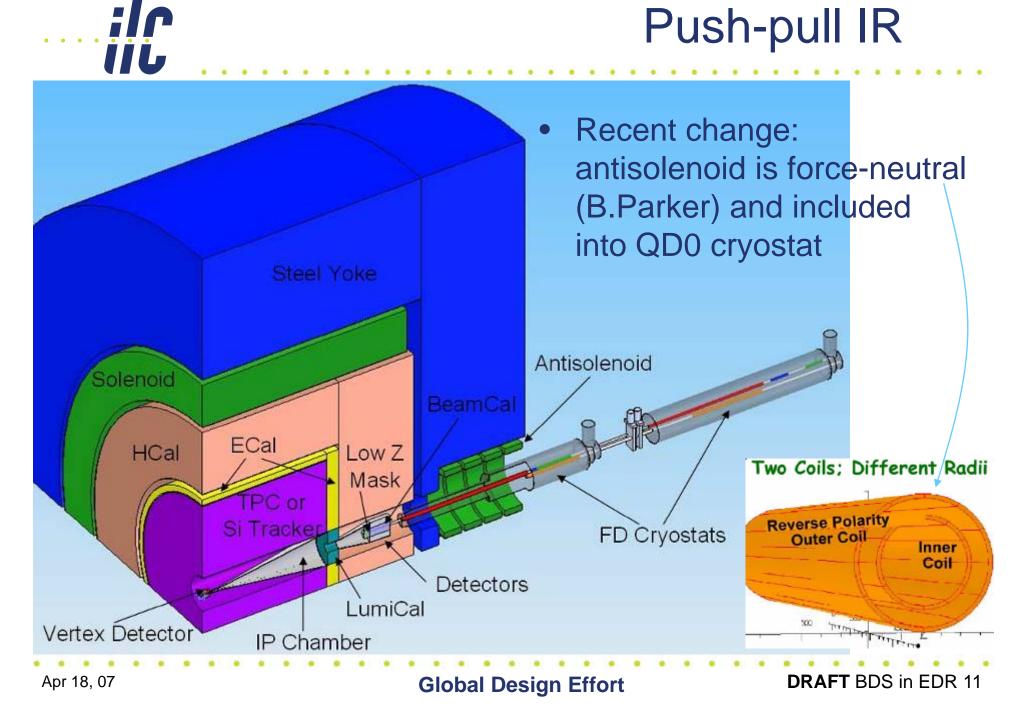

Global Design Effort

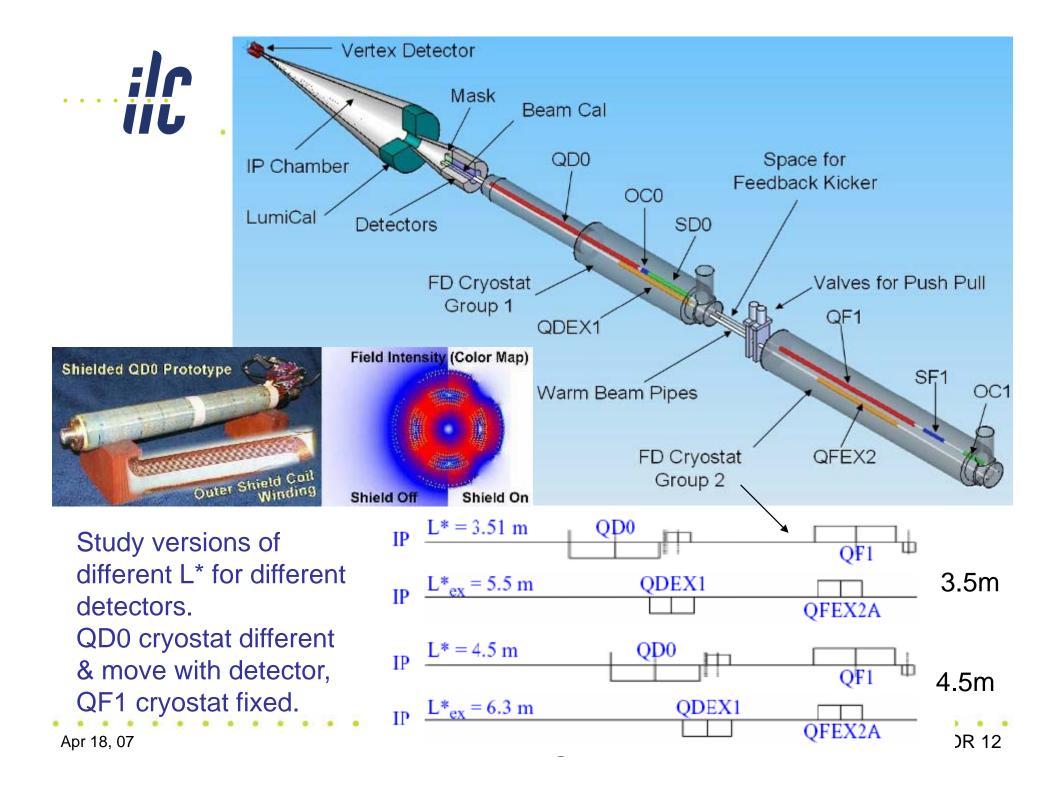
DRAFT BDS in EDR 6

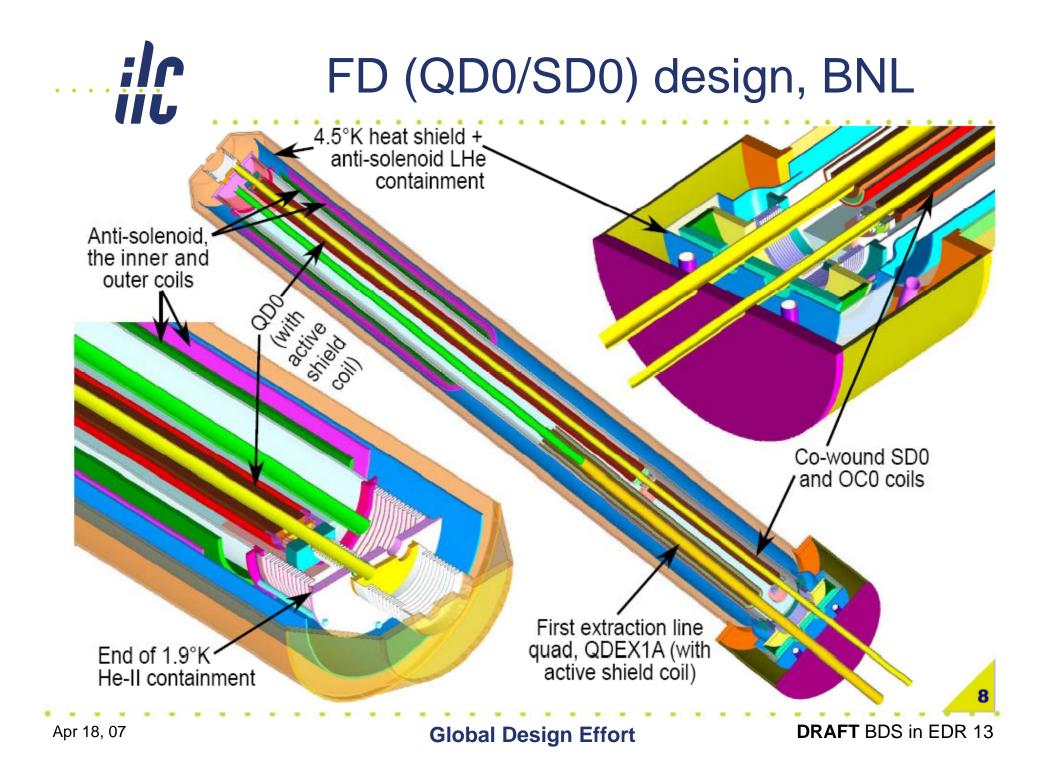
- List of things to focus in EDR
- Overall schedule
- Recommendations for particular Work Packages and for GDE
- Real budget situation is taken into account
- BDS risk cost analysis is taken into account inasmuch as it is relevant for EDR planning

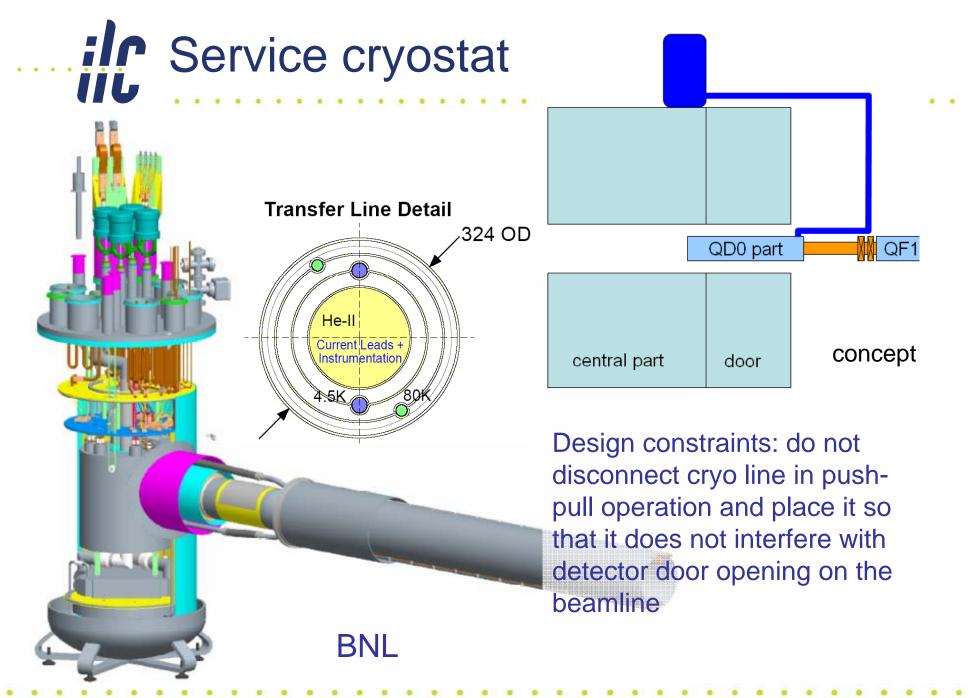
Focus of EDR work (*hardware*)

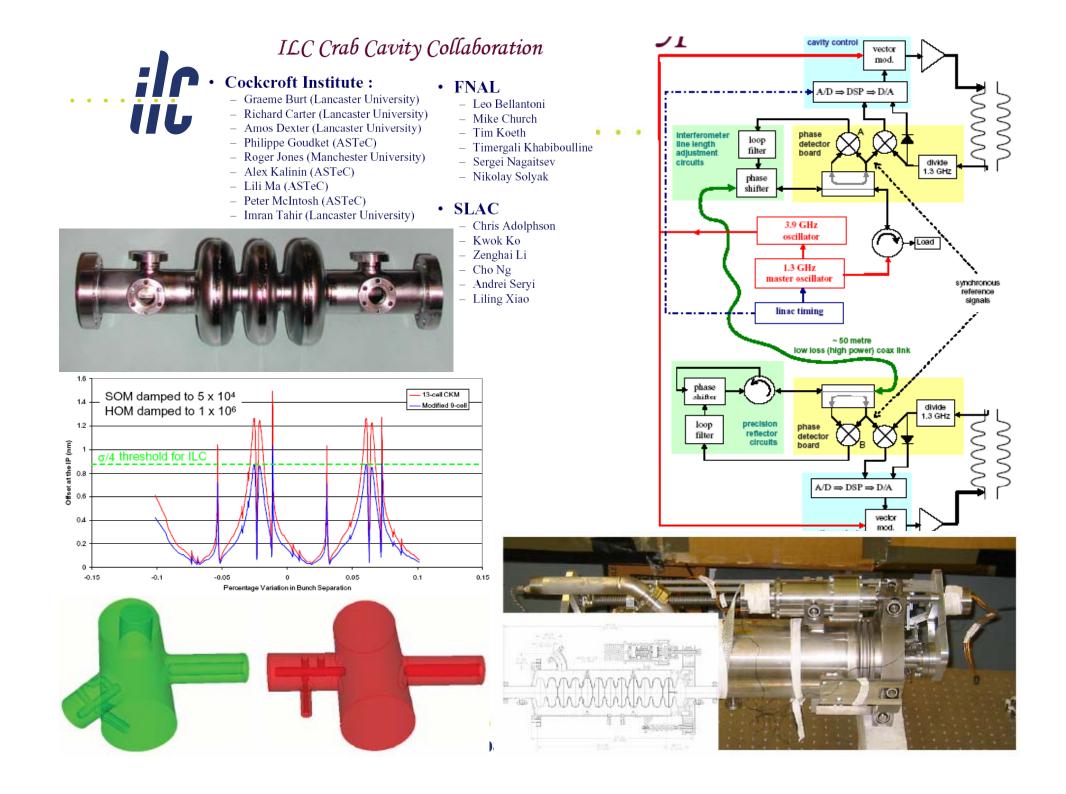
- Integrated design of IR, development of IR superconducting magnets, build engineering prototype of FD magnets, design study to ensure IR mechanical stability, design of push-pull arrangements
- development of crab cavity systems, test phase control system with two single cell cavities, build single cavity
- design, construction, commissioning and operation of ATF2 test facility
- development of laser wires for beam diagnostics, prototype laser wires at ATF2
- development of intra-train feedback, *prototype at ATF2*
- development of collimator design, verification of collimation wake-fields with measurements and verification of collimation beam damage
- development of beam dump design and study of beam dump window survivability;
- development and tests of MDI type hardware such as energy spectrometers;
- and other, as shown in materials referenced in the appendices.


	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
		EDR		App LHC	roval		1	1	Construction	1	1		Commiss.
				physics									
				total length			tunnel				tunnels		
				frozen			layout frozen				ready for install-n		
							optics		optics		inotan n		
							layout		details				
Beam dumps	beam dump critical tests	conceptual d	lesign and	pre approval		beam dump	frozen final enginee	ering	frozen b.dump design	beam dump	construction	beam dump installed	
crab cavity	crab cavity design work & developments and tests of conceptu		of conceptual vity yostat	design of cry integration; t one cavity				frozen		production		installed	
ATF2	ATF2 const installation. commission	Start of	Commissio ning	and optics	Beam stability results	Second pha final doublet emittance &	; smaller	Instrumenta developmer at beamline	nts and tests				
Final Doublet	Engineering design; full length prototype; stability design study and initial stability tests		Stability test: optimization	s & design	final design		production I		lab tests	installation and pre- commissioning			
Detectors	Conceptual design; selection of two concepts; continue design		Design optimization		final design and start of production Construct, assemb		assemble and	pre-commis:	sion on	Lower down & commiss.			
IR integrated	Conceptual eng. design of IR vaccum chambers; supports; pacman and moving shielding; cryogenic; service platform; detector moving system; cranes; etc.		Detailed eng. design of integrated IR with finalized choice of two detectors for final design		final design production	design and start of Juction			installation commission				
	Optimization of number of styles;		Design and cost										
Magnets	definition of design of lo	design of mos interfaces; De w field and otl ibration -wise	etailed her special	optimization; layouts with real space allocation, and detailed interfaces.		n final design & needed prototypes		• Overall tentat		i de la para para para para para para para p			
Collimation	magnets; Vibration -wise design Tests of collimation wakefields and beam damage tests; conceptual eng. design		Detailed eng optimization integration in	&	final design production p		get ⁻ tab	gene les fo	ral id r sev	ea. De eral s	etaile ysten	d ns wi	
Instrument ation		er wires; test secondary bea eng. design		Detailed eng optimization integration in	&	final design production p				installation a commissioni			
Vacuum systen		l conceptual e sign of IR vac		Detailed eng optimization integration o	&	final design		production		installation			


FD magnets & IR integration


· · · · · · · · · · · · · · · · · · ·							
	2007	2008	2009	2010	2011	2012	2013
	EDF			Арр	roval	oval Cons	
DEVELOP ENG. PROTOTYPE OF FD MAGNETS							
Design & build long coil tooling							
Do long coil winding tests							
Perform coil quench threshold tests (non-ILC funds)							
Prototype magnet design							
Design He heat exchanger / lead assembly							
Build & vert. cold test prototype QD0/SD0 coil							
Design magnet tooling							
Buy magnet parts							
Fabricate/Build magnet tooling							
Build insertion region cryostat							
Buy He heat exchanger parts							
Build He heat exchanger / lead assembly							
Buy vibration hardware based on earlier results							
Magnet Assembly							
Perform horizontal cold test							
Do vibration msmts on magnet							
Update reference design as needed based on results							
Final design							
Production							
	1	1				1	· · ·


- Focusing on prototype, delay vibration study until prototype is built
- Concern that funding pushes prototype after EDR and not sufficient funding to cover increase scope of work with push-pull IR => asking GDE for additional resourses


DRAFT BDS in EDR 14

	2007	2008	2009	2010	2011	2012	2013
	EDR			Арр	roval	Construction	
DEVELOP CRAB CAVITY SYSTEM							
Design of cavity & couplers							
Develop conceptual phase control system							
Build two single cells for phase control tests							
Tests concept. phase control system w.2 single cells							
Cavity fabrication							
Cavity tests in vertical dewar							
adjustment of CKM cryostat for crab cavity tests							
buld RF power system							
cavity integration into cryostat							
cavity integration into ILCTA beamline							
beam test of one cavity							
design of optimized cryostat							
build optimized cryostat							
build second crab cavity							
beam test of two cavities							
final engineering							

- Assume additional support for SLAC ACD in 2007=>
- Assumes that funding in UK go as presently outlined (not a guarantee)
- Success oriented plan & relies on synergic developments (3rd acc cav., ERLP, ...)

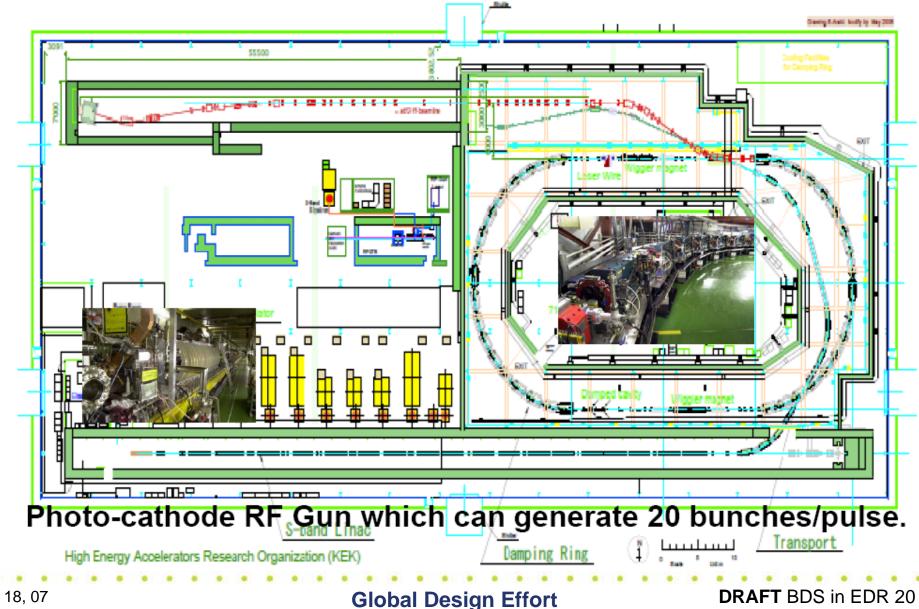
Beam dumps

	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
	2007	2008	2009	2010	2011	2012	2013	2014
	EDR			Арр	roval	Construction		
DEVELOP BEAM DUMP								
Window material study & design dump widow								
Design dump widow remote replacement mechanism								
Eng. design of beam dump rad water system								
Eng. design of beam dump shielding								
Eng. design of beam dump vessel								
Physics design of beam dump								
Prototyope beam dump window								
Irradiation tests of dump window prototype								
Pre approval								
Beam dump final engineering								
Beam dump construction								

- Most of tasks not assigned, program almost cut in UK, under funded in US, and is at risk
- S4 suggest for collaboration leaders to focus on baseline & for GDE to search for ways to augment the beam dump collaboration with additional funds and especially human resources with relevant prior experience of engineering design

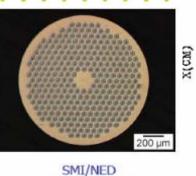
Beam dump work & mitigation

- If concentrated in one place, require, for 3 years:
 - 3 mech. eng./yr + 3 des./yr +1.5 phys./yr + 1M m&s
- Splitting in two regions add inefficiencies
- Concentrating only on BDS dumps, => *50%
- This would be ~890K\$/year efforts, cannot fit now
- Suggest: try to fix 2007, with additional funds from reserve to SLAC on the level ~2-2.5FTE
- Considering: involvement new labs. E.g. discussion with TRIUMF indicated that remote handling may be designed by TRIUMF colleagues

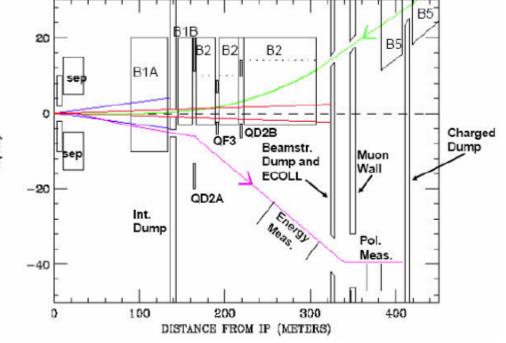


	2007	2008	2009	2010	2011	2012	2013
		EDR			roval	Construction	
ATF2 FACILITY							
ATF2 construction and installation							
Commissioning							
Optics and beam size study							
Beam stability study							
Possibly, SC final doublet							
Possibly, smaller DR emittance							
Instrumentation developments and tests at beamline							


- ATF2 will: prototype FF, help development tuning methods, instrumentation (laser wires, fast feedback, submicron resolution BPMs), help to learn achieving small size & stability reliably, potentially able to test stability of FD magnetic center. ATF2 is one of central elements of BDS EDR work, as it may address noticeable fraction of the BDS technical cost risk.
- S4 is concern about so far not fixed budget at KEK, which is CFS contribution of the host country, & asking GDE's assistance
- S4 is also recommending ATF2 & BDS leaders to enhance work on preparation for ATF2 integration and commissioning

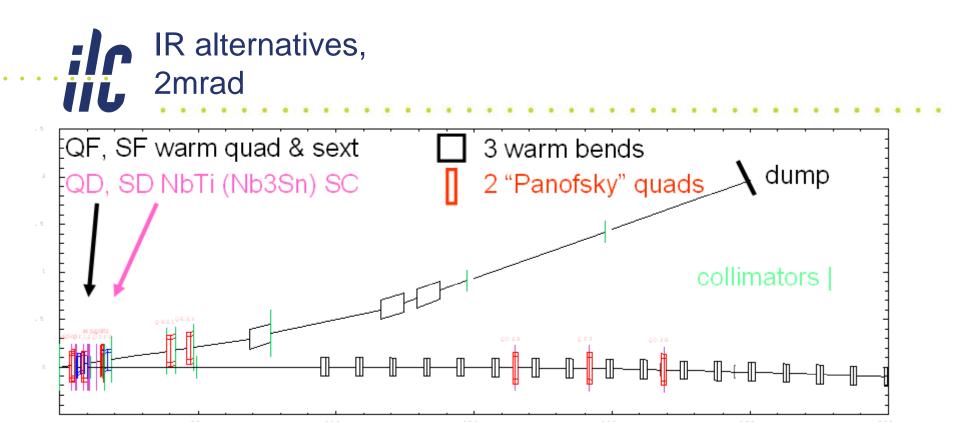


 work on design of vacuum, magnets, MDI work at ESA, etc, ...


 S4 acknowledged that the optics, background and similar design work on small and zero crossing angle alternative schemes, at reasonable level, should continue; while hardware development are not requested for alternatives in EDR (there is a lot of synergy with LARP & European programs on large aperture SC magnets)

IR alternatives,

(step II iteration) 1.26 mm ; 288 x 50 μm tube 1400 A (~2500 A/mm²) @4.2 K & 12T (measured at TEU & INFN-MI)



- LEP ZL module (measured at T
 - FD: NbTi @ 500GeV CM (250T/m, 7T/bore); Nb₃Sn @ 1TeV CM (~370T/m, 10.5T/bore)
 - Separator: ∆=12mm at 55m from IP (to control parasitic crossing beam-beam instability) => 2.6MV/m (±130kV over 100mm gap) & *2 at 1TeV CM), split gap, overlapped with dipole field; low spark rate is essential
 - Challenges: intermediate ~1MW dump, possible back shine to detector; design of downstream diagnostics

Apr 18, 07

Global Design Effort

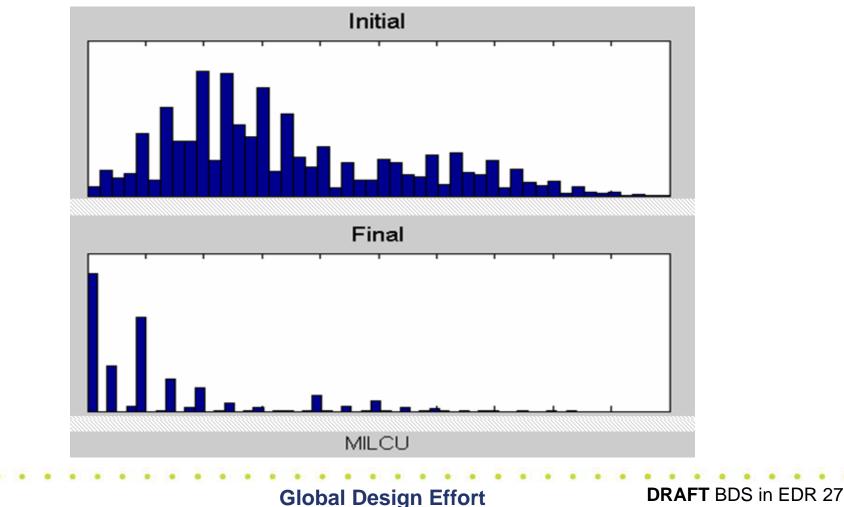
DRAFT BDS in EDR 23

- Focus of latest optics work: trying to design minimal system, shortest, most economical, without downstream diagnostics (added later if new ideas found)
- FD reoptimized with new ILC parameters: SC QD0/SD0 &warm QF1/SF1
- FD is NbTi at 500GeV CM (225T/m, 6.3T/bore) and Nb₃Sn at 1 TeV CM (350T/m, 8.8T/bore)
- Beamline downstream of FD to be designed & studied. Study feasibility of downstream diagnostics, study beam & SR losses and evaluate backscattered background

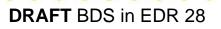
BDS cost risk analysis

- Ongoing work. To be finished in May
- Assumed risk gradations: high (~50%), medium (~25%), low (~10%) and very low (~1%)
- Have in the list
 - Risk: FD jitter
 - Risk: Beam halo
 - Risk: Prompt push-pull operation
 - Risk: Beam dump performance
 - Risk: Laser wire diagnostics
 - Risk: Collimation performance
 - Risk: Crab cavity system performance
 - Risk: Fast feedback performance
 - Risk: Energy and polarization diagnostics
 - Risk: Final focus optics performance
 - Risk: FD compactness
- Consider to add
 - Risk: Incoming beam quality
 - Risk: IR synchrotron radiation

Example: Risk: Beam dump performance


- Assumption in RDR / Initial Risk
 - Assumed that beam dump can perform as expected in the present design, with window surviving the beam density, shielding providing adequate conditions, water system providing adequate internal and external environmental conditions, and that the cost of decommissioning was not needed to be included. The initial risk is estimated as medium.
- Mitigation/detection in EDR
 - Engineering design and beam studies of a window prototype. May find that need to lengthen the extraction line to increase the beam size, include more shielding, and redesign the radiation water handling system.
- Remaining probability of failure at the end of EDR & cost impact
 - After EDR studies the risk may be reduced to low, provided that real site was considered. If not, it remains medium. If design changes would need to be done, the impact is XXM.
- Mitigation/detection in pre-construction
 - Engineering design for real site, continuation of detailed design and prototyping.
- Remaining probability of failure at the end of pre-construction
 - The risk reduced to low.
- Mitigation/detection in construction & commissioning
 - Further decreasing the risk.
- Probability of failure in construction & commissioning & final cost impact
 - Remaining risk is estimated as very low. In case of failure and the need of fixes,

impact may be XXXM.


Apr 18, 07

• Tentatively: the EDR and pre-construction efforts would reduce the BDS cost risk by a factor of three.

• Work is started, may show an example to MAC, without going into much details



