Digital Hadron Calorimeter with Resistive Plate Chambers

José Repond Argonne National Laboratory

ALCPG meeting, by phone, May 3, 2007

Jet Energy Resolution at the ILC

Benchmark Physics Reactions

from M Battaglia, LDC meeting, Paris, 1/2005

Process	Vertex	Track	ing	Ca	lorimetry	F	wd	Very Fwd		Integration		Pol.			
	σ_{IP}	$\delta p/p^2$	ϵ	δE	$\delta \theta, \delta \phi$	Trk	Cal	θ^e_{min}	δE_{jet}	M_{jj}	$\ell ext{-Id}$	V^0 -Id	$Q_{jet/vtx}$		
$ee \to Zh \to \ell\ell X$		x									x				
ee ightarrow Zh ightarrow jjbb	x	x	x			x				x	x				
ee ightarrow Zh, h ightarrow bb/cc/ au au	x		x							x	x				At the ILC, or
$ee \to Zh, h \to WW$	x		x		x				x	x	х				· · ·
$ee ightarrow Zh, h ightarrow \mu \mu$	x	x									x				of the jet ene
$ee \rightarrow Zh, h \rightarrow \gamma\gamma$				x	x		x								
$ee \to Zh, h \to \mathrm{i} nvisible$			x			x	x								drives the de
$ee \rightarrow \nu \nu h$	x	x	x	x			x			x	x				
$ee \rightarrow tth$	x	x	x	x	x		x	x	x		\mathbf{x}				just the calor
$ee \rightarrow Zhh, \nu \nu hh$	x	x	x	x	x	x	x		x	x	\mathbf{x}	x	x	x	
$ee \rightarrow WW$					· · · · · · · · · · · · · · · · · · ·					x			x		but the entire
ee ightarrow u u WW/ZZ						x	x		x	x	x				
$ee \rightarrow \tilde{e}_R \tilde{e}_R$ (Point 1)		x						x			x			x	
$ee \rightarrow ilde{ au}_1 ilde{ au}_1$	x	x						x							
$ee ightarrow ilde{t}_1 ilde{t}_1$	x	x							x	x		x			
$ee \rightarrow \tilde{\tau}_1 \tilde{\tau}_1$ (Point 3)	x	x			x	x	x	х	x						
$ee \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0$ (Point 5)									x	x					
$ee \rightarrow HA \rightarrow bbbb$	x	x								x	x				Gain of factor ~1.4
$ee ightarrow ilde{ au}_1 ilde{ au}_1$			x												
$\chi^0_1 o \gamma + ot\!$					x							_			
$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi_{soft}^{\pm}$			x					x							
$ee \rightarrow tt \rightarrow 6 \ jets$	x		x						x	x	x		ξ 120 Δ	F., = (0.60 √E _{je} 120
$ee ightarrow ff \; [e, \mu, \tau; b, c]$	x		x				x		x		x		Z' 120	F	^{0.60} √E _# 50%/√E _{jet}
$ee \rightarrow \gamma G \ (ADD)$				x	x			х							
$ee \to KK \to f\bar{f}$		200				I	L			I		5	100		100
$ee \rightarrow ee_{fwd}$								1							
$ee \rightarrow Z\gamma$: 30	0/	./~		or	Λ	0/_				
					- 50	/0		√E _{iet}	U	-	/0		80		80
								, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
													60		
					Sepa	ara	ite	e⁺e⁻ —	→ W	+W	້າງງ	and	7070	2011	<u> </u>
					-0000						-00	-ciric		-0-0	мјцј2

ptimization ergy resolution esign of not rimeter, e detector

in Luminosity

 $\Delta E_{jet} = \frac{0.30}{30} \sqrt{E_{et}} / \sqrt{E_{jet}}$

80

60

100

120

PFAs and Calorimetry

Fact

Particle Flow Algorithms improve energy resolution compared to calorimeter measurement alone (see ALEPH, CDF, ZEUS...)

How do they work?

Particles in jets	Fraction of energy	Measured with	Resolution [σ ²]	_
Charged	65 %	Tracker	Negligible	
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	≻ 18%/√E
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	
Confusion	Required	I for 30%/√E	≤ 0.24² E _{jet}	

Minimize confusion term

Maximize segmentation of calorimeter readout

High segmentation

O(.15 cm²) in the ECAL and O(1 cm²) in the HCAL \rightarrow channel count of O(10⁷ – 10⁸) for the entire calorimeter

Technical implementation

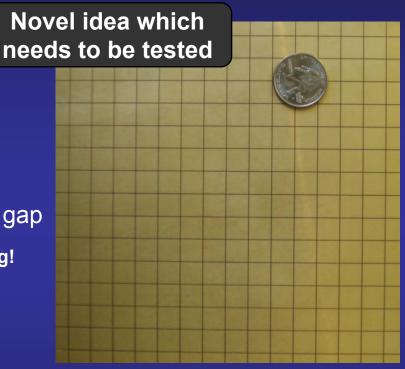
Si-Tungsten ECAL + Resistive Plate Chambers (RPCs) – Steel HCAL (Scintillator, GEMs...)

Concept of a Digital Hadron Calorimeter

Absorber

40 Steel plates of 20mm (~1 X_0) Corresponds to ~4 λ_I

Active medium


Resistive Plate Chambers with 1 single gap Glass as resistive plates Operated in avalanche mode No aging!

Readout

1 x 1 cm² pads \rightarrow 5.10⁷ channels for the entire HCAL

1-bit resolution per pad (digital readout) ← preserves single particle resolutions

Trading high resolution of the readout of calorimeter towers with the low resolution of a large number of channels

Members of the

Collaboration

>200 physicists 39 institutes 12 cou

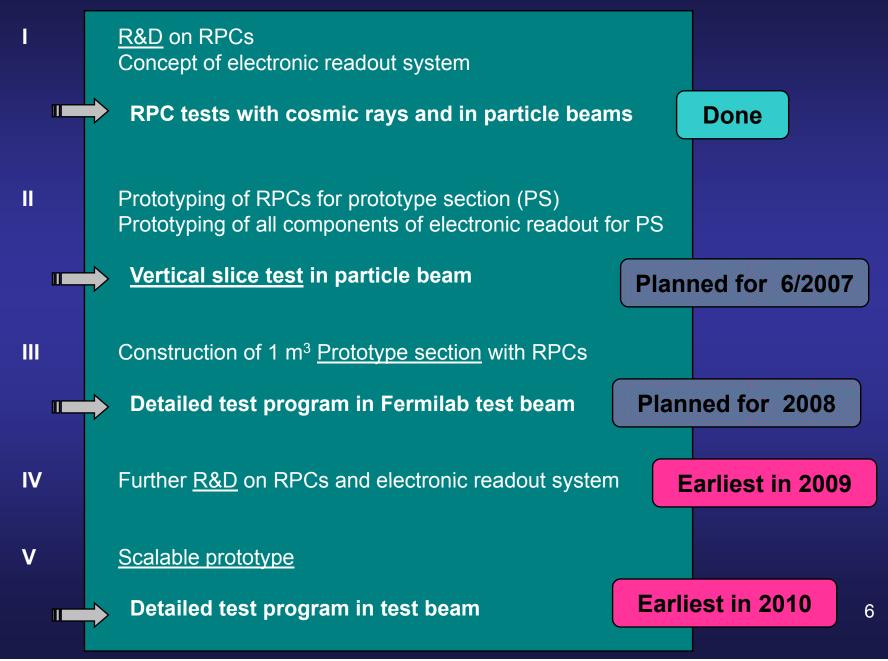
Prototype calorimeters

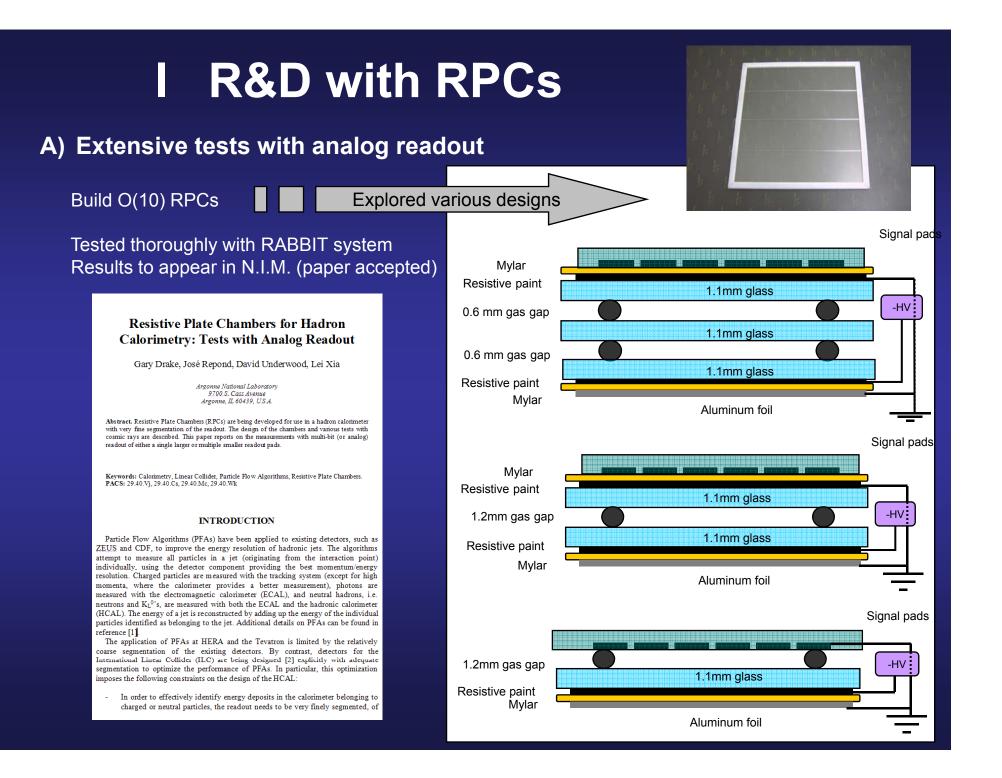
I) Electromagnetic Calorimeter

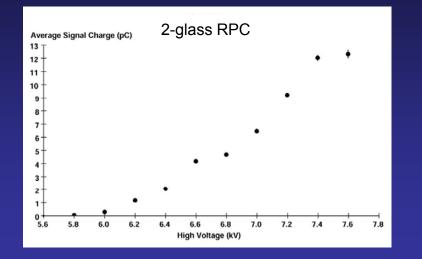
Silicon – Tungsten Scintillator – Lead (recent addition)

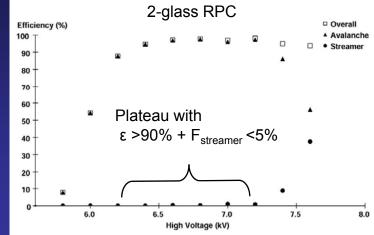
II) Hadron Calorimeter

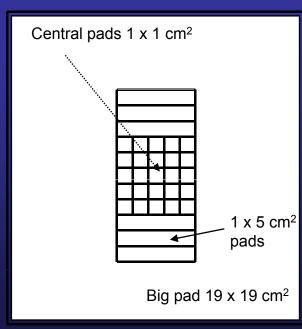
Scintillator Resistive Plate Chambers Gas Electron Multipliers Micromegas

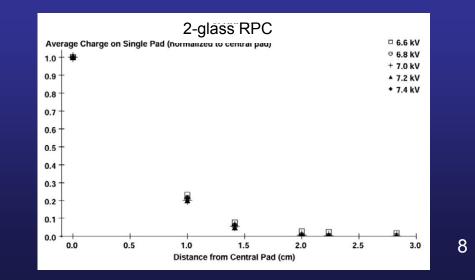

– Steel

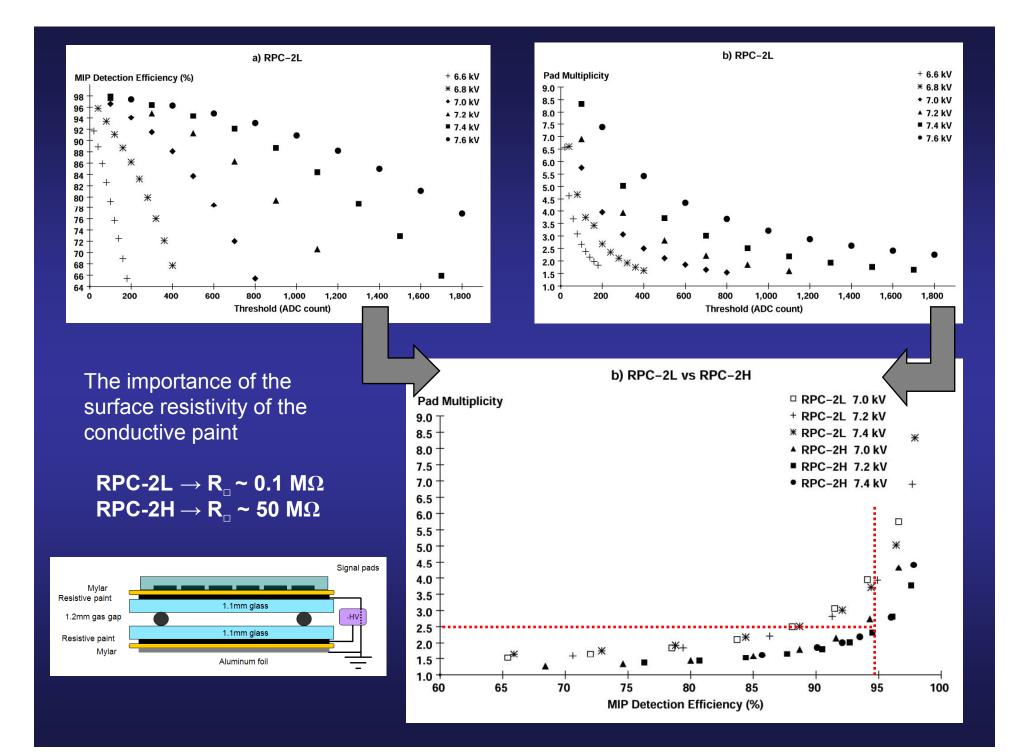

III) Tail Catcher/Muon Tracker Scintillator – Steel



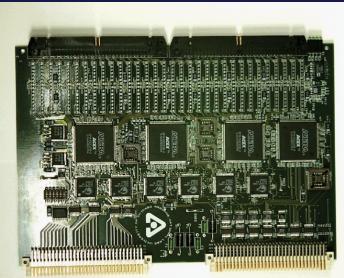

Staged approach

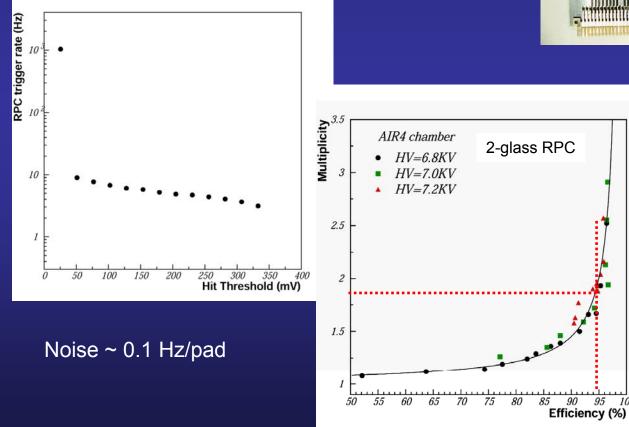



Some results with single readout pad of 16 x 16 cm²...



...some results with multiple readout pads of $1 \times 1 \text{ cm}^2$

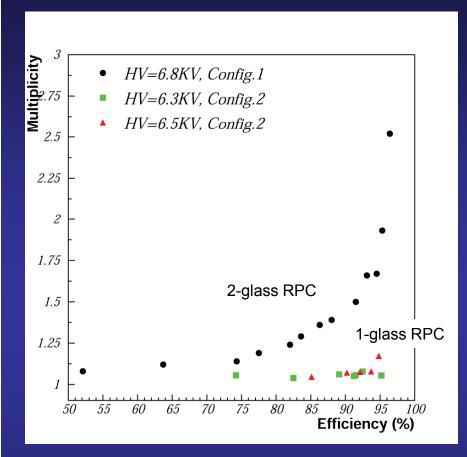




B) Tests with Digital Readout

Built VME-based readout system \rightarrow readout for 64 pads

Needed additional amplifiers on pads Preliminary results only (results with 'final' system expected to be better)

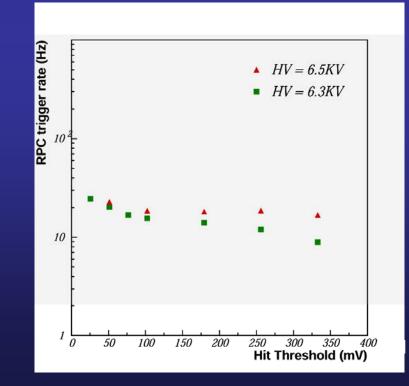


Pad multiplicity much reduced compared to analog case

For ε ~ 95%

95 100

 \rightarrow M ~ 1.7 – 1.8


Major issue: long-term stability?

Pad multiplicity much reduced with 1-glass RPC

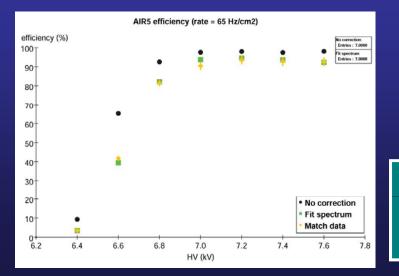
For $\epsilon \sim 70 \div 95\%$

 \rightarrow M ~ 1.1

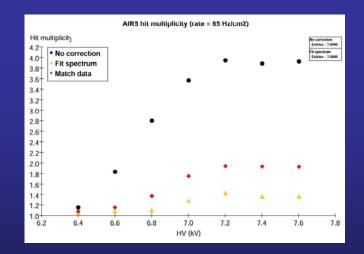
(this result recently confirmed by Russian group)

C) Exposure to Fermilab Test beam

Tests included 3 chambers


2-glass RPC with digital readout1-glass RPC with digital readout(2-glass RPC with independent digital readout)

Tests took place in February 2006


Mostly ran with 120 GeV protons

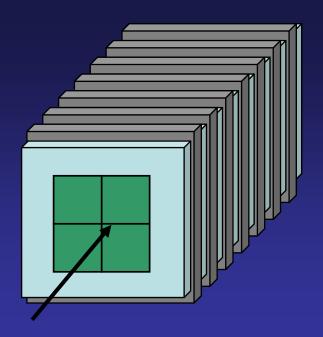
Problem

Only realized later that trigger counter off beam axis Triggered mostly on events which showered upstream \rightarrow High multiplicity in the chambers

Great learning experience !!!! Results (after corrections) confirmed previous measurements with cosmic rays

Summary of R&D with RPCs

Measurement	RPC Russia	RPC US
Signal characterization	yes	yes
HV dependence	yes	yes
Single pad efficiencies	yes	yes
Geometrical efficiency	yes	yes
Tests with different gases	yes	yes
Mechanical properties	?	yes
Multi-pad efficiencies	yes	yes
Hit multiplicities	yes	yes
Noise rates	yes	yes
Rate capability	yes	yes
Tests in 5 T field	yes	no
Tests in particle beams	yes	yes
Long term tests	ongoing	ongoing
Design of larger chamber	ongoing	ongoing


R&D virtually complete

II Vertical Slice Test

Uses the 40 front-end ASICs from the 2nd prototype run

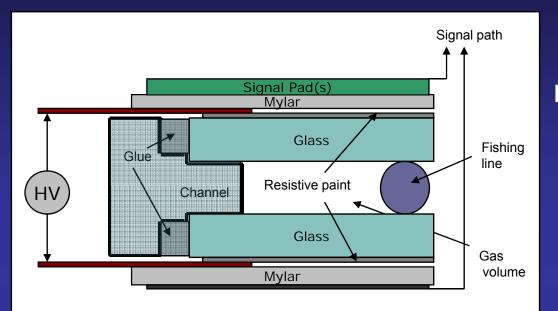
Equip ~10 chambers with 4 chips each

256 channels/chamber ~2500 channels total

Chambers interleaved with 20 mm copper - steel absorber plates

Electronic readout system (almost) identical to the one of the prototype section

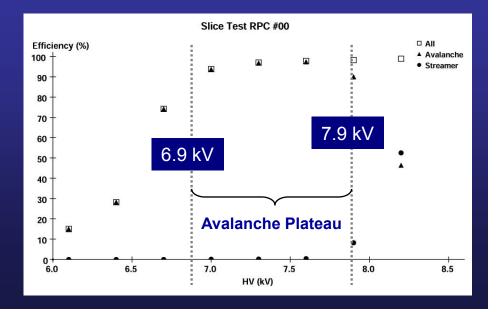
Tests in FNAL test beam planned for June 2007


 \rightarrow Measure efficiency, pad multiplicity, rate capability of individual chambers

 \rightarrow Measure hadronic showers and compare to simulation

Validate RPC/GEM approach to finely segmented calorimetry Validate concept of electronic readout

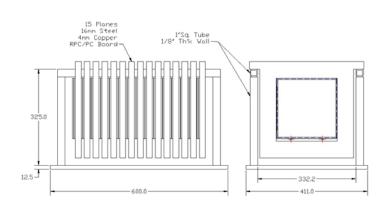
RPC construction and testing for the VST

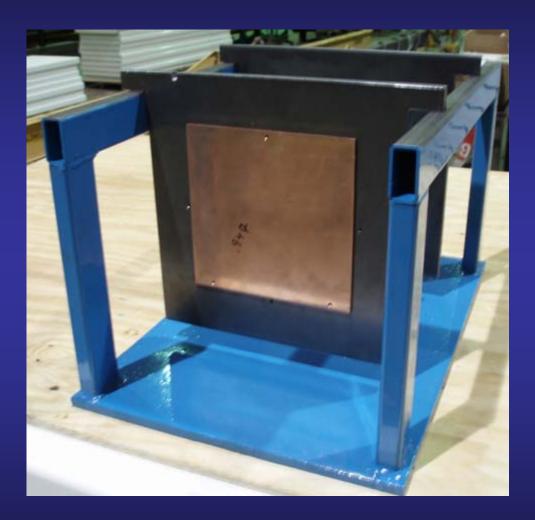


New design with simplified channels

Argonne

 1^{st} chamber assembled and tested \rightarrow Excellent performance 2^{nd} chamber assembled and tested \rightarrow Excellent performance $3^{rd} - 6^{th}$ chamber being assembled

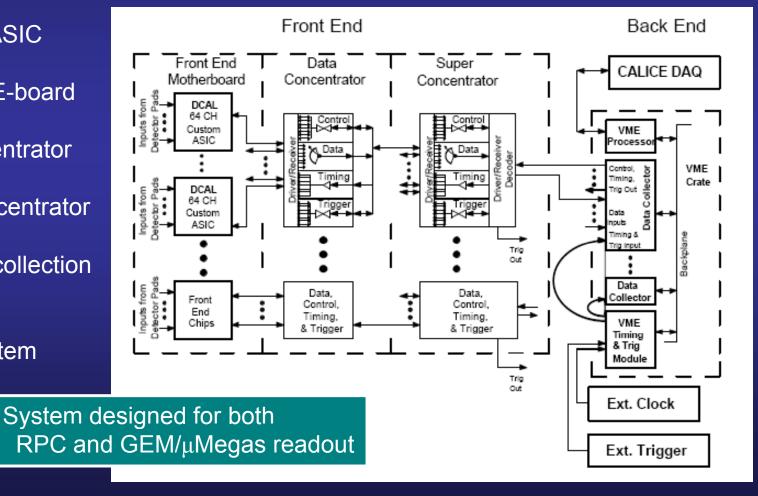

Material in hand for all remaining chambers



Mechanical: Stack for VST

Stack is assembled

Design accommodates 20 x 20 cm² RPCs as well as 30 x 30 cm² GEMs


Electronic Readout System

Prototype section: 40 layers à 1 m² \rightarrow 400,000 readout channels

More than all of DØ in Run I Half of CDF channel count

- A Front-end ASIC
- B Pad and FE-board
- C Data concentrator
- D Super Concentrator
- E VME data collection
- F Trigger and timing system

A The front-end DCAL chip

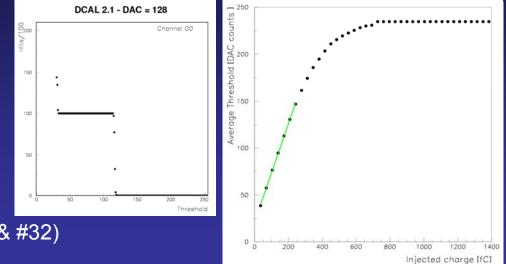
Design

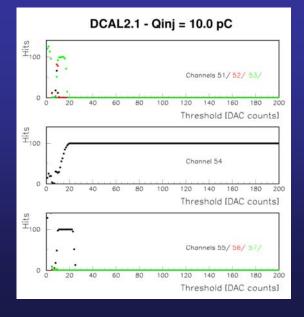

- \rightarrow chip specified by Argonne
- \rightarrow designed by FNAL

2nd version

- \rightarrow prototyped (40 chips in hand)
- \rightarrow extensively tested at Argonne
- \rightarrow tests complete

Reads 64 pads Has 1 adjustable threshold Provides Hit pattern Time stamp (100 ns) Operates in External trigger or Triggerless mode

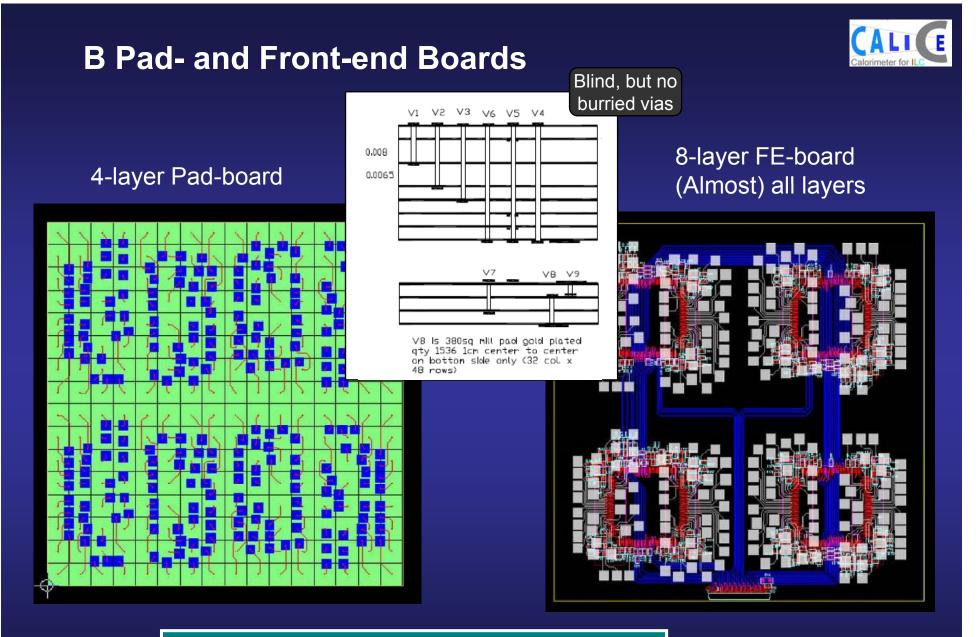

The front-end DCAL chip – Tests


Tests of basic functions

 \rightarrow all ~OK (small problem with addressing)

Tests with internal pulser

→ threshold curves → as expected (small problem with channels #31 & #32)

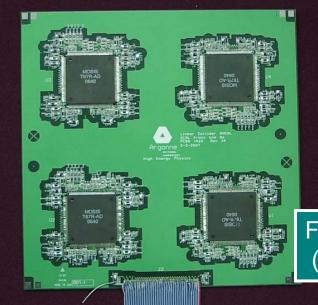

Tests with external pulser (high gain)

- \rightarrow threshold linear up to 300 fC \rightarrow threshold range up to 700 fC
- (RPC signals between 100 fC and 10 pC)

Measurements of noise floor and cross talk

- \rightarrow noise floor < 20 fC (better with actual FE-board!)
- \rightarrow cross talk < 0.3%

Chips can be used for VST Small modifications still necessary for production


Very intricate design. Difficult to manufacture. \rightarrow several iterations with vendors

Pad- and Front-end Boards – Tests

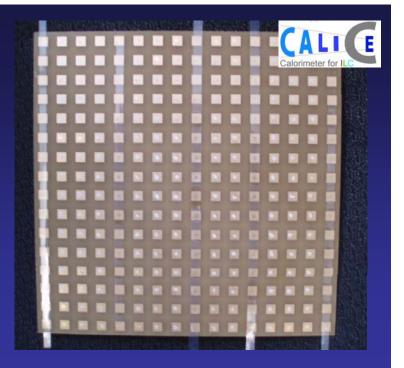
Front-end boards: fabricated and one assembled Test-board (computer interface): fabricated and assembled Testing software written

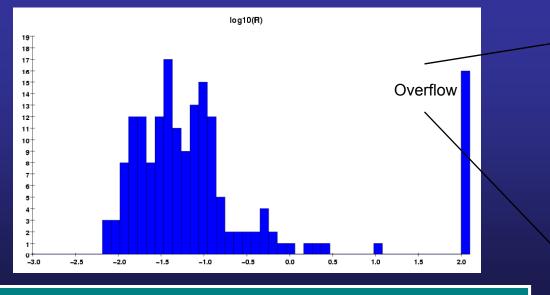
FE-board functional (passed all basic tests this morning)

Pad-board: design completed Fabrication: received *reasonable* quotes

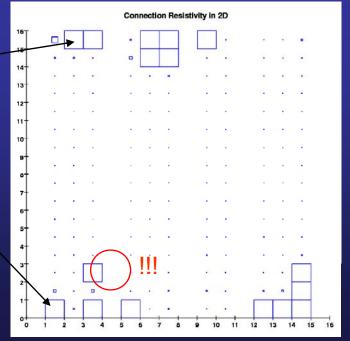
To be ordered today...

Gluing Tests




Test boards

Glued two boards to each other \rightarrow strips of mylar for constant gap size


Results

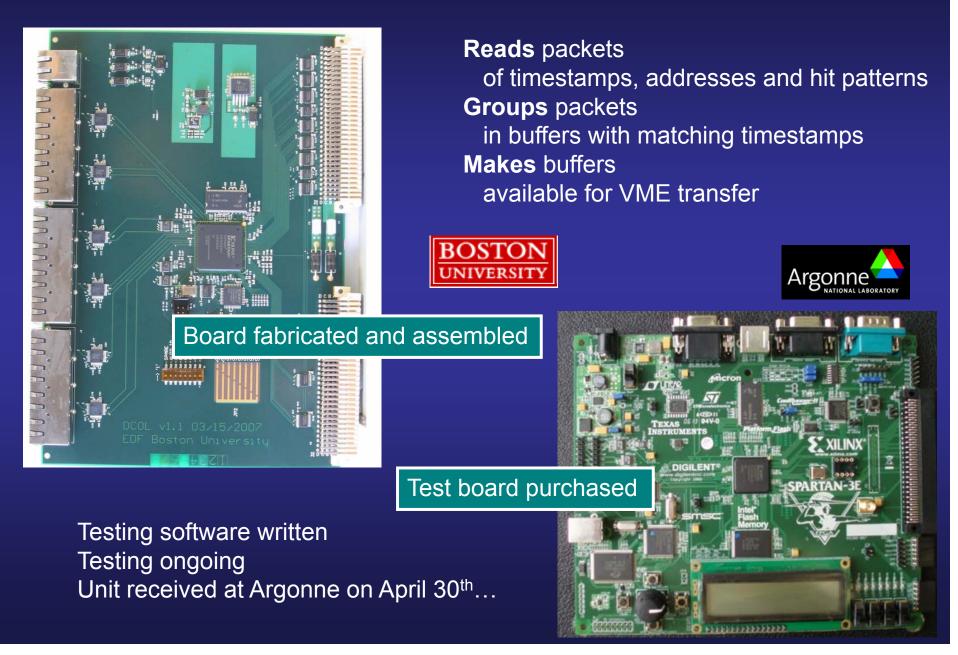
Resistance < 0.1 Ω Glue dots small (<3 mm Ø) and regular Edges lift off \rightarrow additional non-conductive epoxy

Further tests with 'realistic' test boards next week

C Data concentrator boards

Design completed Boards fabricated 1/10 board assembled

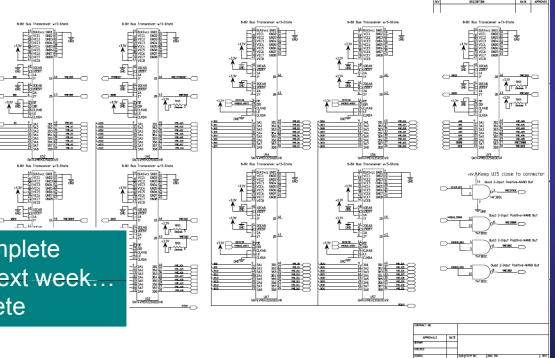
Test board fabricated and assembled Tests began today...



Reads

4 DCAL chips in the VST 12 DCAL chips in the PS **Sends data to** DCOL in the VST Super-concentrator in the PS

E Data collector boards


F Timing and trigger module

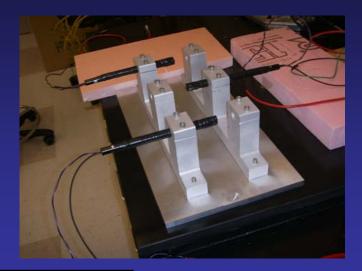
Provides clocks and trigger signals to individual DCOL boards

Need 1 module for both the

Vertical Slice Test and the 1 m³ Prototype Section

Board layout 95% complete \rightarrow to be fabricated next week... Firmware 80% complete

Summary of subcomponents


Subcomponent	Vertical Slic	e Test	Same?	Prototype Section			
	Inputs \rightarrow Outputs	Units needed		Inputs → Outputs	Units needed		
Pad boards	256 → 256	10	ŧ	1584 → 1584	240		
FE-boards	$256 \rightarrow 256 \text{ (analog)} \ ightarrow 4 \text{ (digital)}$	10	=	$256 \rightarrow 256$ (analog) $\rightarrow 4$ (digital)	1440		
FE-ASICs	64 → 1	40	=	64 → 1	5760		
Data concentrators	4 → 1	10	ŧ	12→ 1	480		
Super concentrators	-	-	ŧ	6 → 1	80		
Data collectors	12 → 1	1	=	12 → 1	7		
Trigger and timing module		1	=		1		

Beam telescope, HV, and gas

Beam telescope

6 counters $(3 \times (1 \times 1 \text{ cm}^2) + 1 \times (4 \times 4 \text{ cm}^2) + 2 \times (19 \times 19 \text{ cm}^2)$ Mounted on rigid structure Counters and trigger logic tested \rightarrow A.White

HV modules

Need separate supplies for each chamber Modules (from FNAL pool) being tested

With additional RC-filter perform similarly to our Bertan unit in analog tests (RABBIT system) Digital tests satisfactory too

Gas system

Need manifold for 10 chambers (in hand!) Will purchase pre-mixed gas (quote in hand)

Based on

CALICE DAQ framework (\rightarrow combined data taking) CERN HAL library

Two configurations

Vertical Slice Test with 10 x 4 ASICs or 2560 channels Prototype Section with 40 x 144 ASICs or 400k channels

Data archived for offline analysis

Contains: run metadata, hit patterns & addresses & timestamps Configuration data stored in SQL database

DAQ software will be used

For hardware debugging In cosmic ray and charge injection tests In FNAL test beam

Status

HAL based testing and debugging system running Toy version of CALICE DAQ running with *old* VME hardware Data structure (binary files) defined

Next steps

Define operations for new hardware

Data Analysis

For Vertical Slice Test only

Online histograms

DHCAL specific plots to be added

Σ_{all}hit versus time
Σhit versus chamber
2dhisto of chamber hits (all layers)
2dhisto of chambers hits (per layer)
{Chamber efficiency and pad multiplicity}

II Analysis of binary files

Important in debugging phase

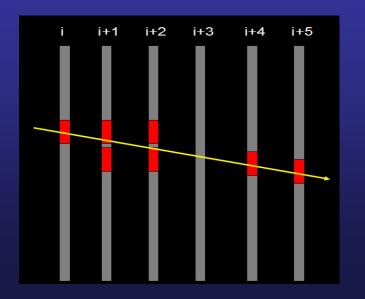
III Conversion to LCIO

Standard for LC data bases Conversion to be done by CALICE expert a) an event display

b) track segment finder

Programming will start soon...

How to calibrate a DHCAL


Shower energy reconstruction

$E = \alpha N_{hit}$

N_{hit} ...number of particles crossing active layers

depends on

a) single particle detection efficiency b) hit multiplicity That's all !!

Track Segment Finder

Use any shower

Loops over layers 1 - 8 Loops over hits in layer i Determines #neighboring hits N_i Searches for aligned hits in layer i+2,3,4,5 Determines #neighboring hits around aligned hit

 N_{i+2} , N_{i+3} , N_{i+4} , N_{i+5} ($N_i = 0$...no aligned hits)

Looks for aligned hits in layer i+1 Determines #neighboring hits N_{i+1}

Efficiency of layer i+1

 N_{i+1} >0.and. N_{i+2} >0(.and. N_{i+3} >0)

N_{i+2}>0(.and.N_{i+3}>0)

Pad multiplicity of layer i+1

 N_{i+1} , for $N_i=1.and.N_{i+2}=1(.and.N_{i+3}=1)$

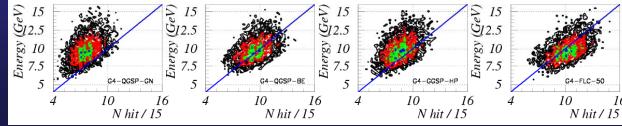
Responsibilities and collabe	Argonne				
Task	Responsible institutes	NATIONAL LABORATORY			
RPC construction	Argonne, (IHEP Protvino)	BOSTON			
GEM construction	UTA	UNIVERSITY			
Mechanical structure (slice test)	Argonne	DESY			
Mechanical structure (prototype section)	(DESY)	CALLE			
Overall electronic design	Argonne	Calorimeter for ILC			
ASIC design and testing	FNAL, Argonne				
Front-end and Pad board design & testing	Argonne	Fermilab			
Data concentrator design & testing	Argonne				
Data collector design & testing	Boston, Argonne	I HE UNIVERSITY OF IOWA			
Timing and trigger module design and testing	FNAL				
DAQ Software	Argonne, CALICE				
Data analysis software	Argonne, CALICE, FNAL	ИФВЭ			
HV and gas system	Iowa 5				
Beam telescope	UTA	The University of Texas ARLINGTON ₂ 31			

Component	February	March	April	April			June
ASIC	Complete testing Provide new packing scheme Order 40 additional				Test	Test with cosmic rays	Move to MT6 Test in test beam
Gluing	Test with regular epoxy	Test with conductive epoxy	Test with real b	Develop gluing procedure Test with real boards Glue all boards			
Pad boards	Specify dimensions Complete design		Order for RPCs	Order for RPCs			
Front-end boards	Complete design Order 15	Fabricate Assemble	Test	Test Test			
Interface board (to test FE-boards + ASIC)	Complete design	Fabricate Assemble					
Data concentrator	ta concentrator		Test			n from	4/9/2007
Data concentrator test board		Complete design Fabricate Assemble					
Data collector	Complete design Acquire crates	Fabricate Assemble	Test	Test			
Data collector test board		Acquire Write software					
Timing & trigger module	Discuss with FNAL	Design	Fabricate Assemble Test	Assemble			
Software	Acquire PC	Complete standalone development (with 'old' VME card)	Complete deve DCOL	lopment with			
RPCs	Complete #1	Test #1 Test #2	Buil#3-6 Test #3-6				
Offline	Propose concept		n Write software		-		

III Prototype section

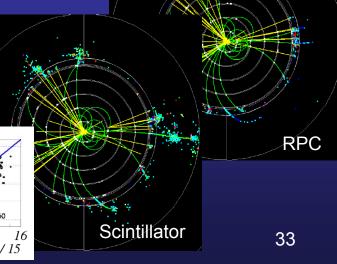
What is it?

40 layers of RPCs interleaved with Fe/Cu plates Each layer ~ 1 m² With 1 x 1 cm² \rightarrow 400,000 readout channels Reuses stack and movable stage of CALICE AHCAL (scintillator)


What will we learn technically?

First fine granularity calorimeter with RPCs (does this work? What's the energy resolution?) First calorimeter with digital readout of pads (does this work?)

Test of concept of DHCAL


What will we learn physics – wise?

Which GEANT model describes our data (best)? Comparison with scintillator: sensitivity to low-E neutrons?

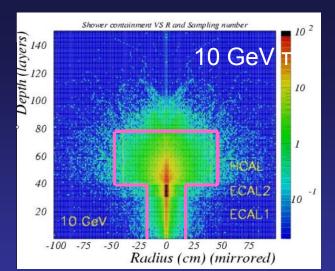
V Morgunov: 1 x 1 cm² scintillator tiles

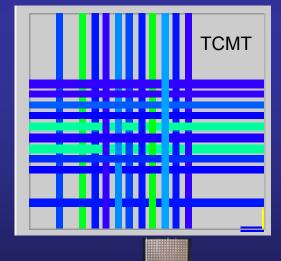
Do you need a full cubic meter?

A cubic meter will contain most of the energy The scintillator AHCAL is a cubic meter (easier comparison) Lateral leakage is deadly (see DREAM results) Need to understand the tails (fragments) of showers

Is gas calorimetry understood?

Other groups tried RPCs with pad readout (and gave up) No gas calorimeter with our type of fine readout has ever been tested GEANT4 offers wide range of predictions


MINOS already measured detailed shower shapes?


Remember: MINOS used scintillator strips: 100 x 4 cm² Factor of 400 in granularity!

The test should use the 'final' ILC detector technology?

We have no power pulsing: will it still be needed in 17 years? We could have more multiplexing: new technologies in 17 years? (I wouldn't use original ZEUS electronics now)

There is a lot to be done with the non-'final' readout system

Is this data useful for GEANT4?

Yes

Calorimeter data with fine granularity badly needed as a cross check (see Dennis Wright's talk at the SLAC SiD meeting)

No

This data can't be used for tuning the particle interaction cross sections (A comprehensive program to measure cross sections to improve hadronic shower models might even take more time to realize than the ILC...)

But

To first order, ILC detectors only need a hadronic shower simulation which describes the features important for PFAs....

Shower radius, number of hits, fragments...

How to test PFAs?

Tests with complete system (tracker+calorimeter) in particle for beam?

Particle beam ≠ hadronic jet (even with a thin target in front) The major uncertainty is the simulation of hadronic showers from single particles → for this, measurements with calorimeters are sufficient (no tracker needed)

There is no way around relying on simulation!

At least until the start of the ILC

Time scale for PS

Provided the VST is successful

 \rightarrow will need a small amount of R&D and prototyping for PS

- Larger chamber with new design
- Larger pad board (no active components)
- Gluing techniques (automatic)
- Data concentrator board with 12 inputs
- Super-concentrator boards (similar to concentrator)

Supplemental LCDRD funds

Will receive \$250k this year to be shared with other institutions All M&S funding for building the prototype section

Completion date in 2008 is conceivable

Can proceed in parallel with construction and testing of other subcomponents

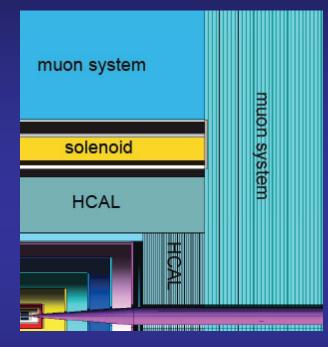
IV R&D beyond the PS

Optimized RPCs

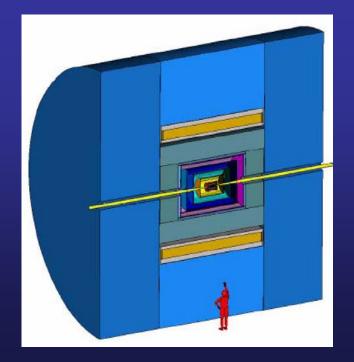
Can they be made thinner (currently 3.5 mm/2.5 mm) Longevity of 1-glass RPC design? Increased rate capability?

Electronic front-end

Finer segmentation of readout? DCAL chip with more inputs (currently 64) → Corresponding front-end board ????? Reduce overall thickness (currently 4.5 mm) Finer timing (currently 100 ns)? Cooling: power pulsing? Higher multiplexing (token rings)


Electronic back-end

Higher multiplexing


Depends on outcome of tests with PS and further understanding of PFAs

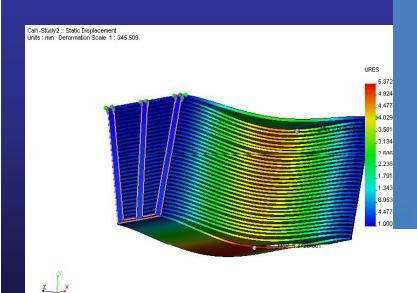
V Mechanical Design

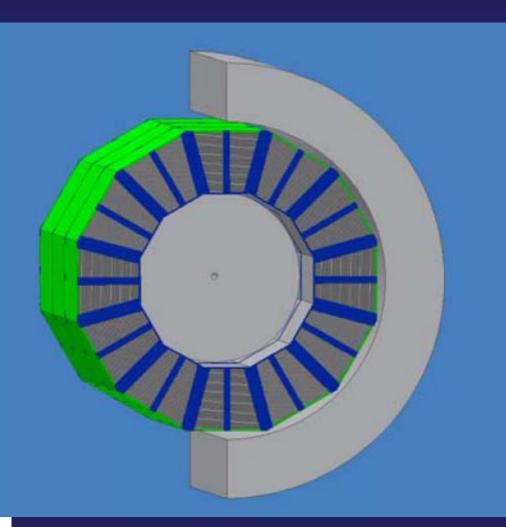
Detector Concept	Optimized for PFA	Compensating Calorimetry
SiD	Yes	No
LDC	Yes	No
GLD	Yes	Yes
4 th	No	Yes

Concept (unproven)

Mechanical design

Concept of a BHCAL



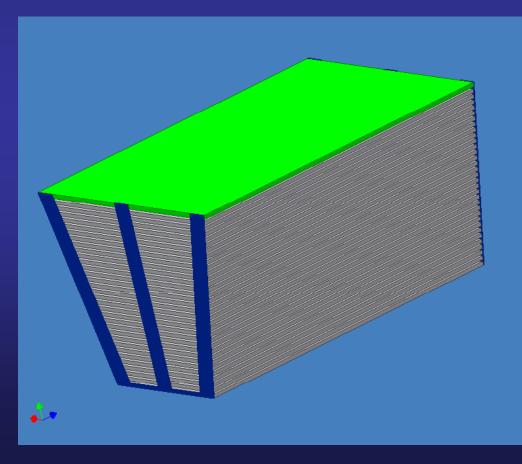

Mechanical design of BHCAL

3 barrels in z 20 mm steel plates

Held in place by 'picture frames'

 \rightarrow space for routing cables...

FEA: deflections < 0.53 mm ₉


Prototype of a BHCAL module

Working on a detailed design

Variable size RPCs (wedge) Integrated gas distribution system Integrated HV/LV distribution system Integrated front-end electronics

Will have to be tested in particle beam

Still far in the future...

I RPC testing

Virtually complete (first N.I.M. paper) Still need long-term studies

II Vertical Slice Test

Going full speed ahead Will be in test beam in June 2007

III Prototype section

Partial funding 'received' Can be build in 2008 Extensive test program with CALICE ECAL

IV R&D beyond prototype section

Design of both RPCs and electronics can be optimized for ILC

V Scalable prototype

Initial thoughts on barrel hadron calorimeter for SiD

Conclusions

