

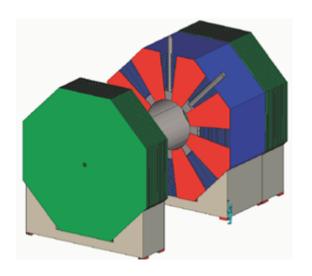
SiD Muon System

Henry Band U. Of Wisconsin H.E. Fisk Fermilab

Outline

- Benchmarks
- Performance studies
- Engineering design
- Technology options
 - Scintillator
 - RPC
- Schedule

10/26/07


- Technology choices
- LOI Oct. 08
- EDR fall 10
- Open projects All of the above!

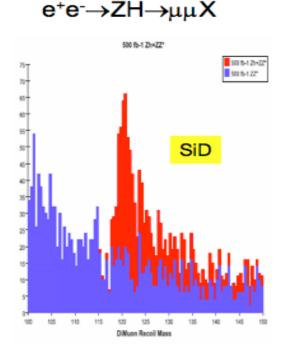
•

SiD Muon DOD

- SiD
 - 2.3 m flux return ~14 λ
 + 6 λ(Cal+Sol.)
 - 15 layers
 - Tail-catcher ?

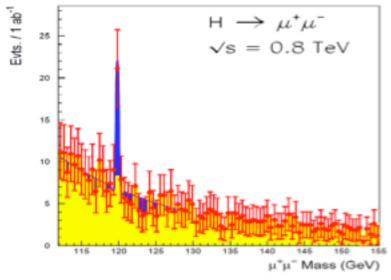
- Barrel
 - Size ~2.9X5.9 5.6X5.9 m
 - Area (15 layers) 2700 m²
- Endcaps
 - area of 3400 m²
- Weight ~ 6-8000 metric tons
- RPCs 2600 chambers @ 2-3 m², 350k channels
- Scintillator strips 50-100 k channels

Benchmarking processes - Muon


reduced list from Snowmass 2005 report hepex/0603010

- Muons
 - efficiency vs purity (hadronic misidentification rates)
- 0. Single e^{\pm} , μ^{\pm} , π^{\pm} , π^{0} , K^{\pm} , K^{0}_{S} , γ , $0 < |\cos \theta| < 1$, 0 GeV $1. <math>e^{+}e^{-} \rightarrow f\bar{f}$, $f = e^{\mu}$, τ , u, s, c, b at $\sqrt{s}=0.091$, 0.35, 0.5 and 1.0 TeV; 2. $e^{+}e^{-} \rightarrow Z^{0}h^{0} \rightarrow \ell^{+}\ell^{-}X$, $M_{h} = 120$ GeV at $\sqrt{s}=0.35$ TeV; 3. $e^{+}e^{-} \rightarrow Z^{0}h^{0}$, $h^{0} \rightarrow c\bar{c}$, $\tau^{+}\tau^{-}$, WW^{*} , $M_{h} = 120$ GeV at $\sqrt{s}=0.35$ TeV; $\rightarrow \mu^{+}\mu^{-}$ 6. $e^{+}e^{-} \rightarrow \tilde{\tau}_{1}^{+}\tilde{\tau}_{1}^{-}$, at Point 3 at $\sqrt{s}=0.5$ TeV; $\rightarrow \mu^{+}\mu^{-}$
 - No serious study of how good the muon ID should be
 - Keep efficiency high (obvious)
 - Acceptable hadronic fake rate ?
 - Need simple fast MC analyses utilizing Tim's data set of SM processes and ZH signals

10/26/07 H. Band - U. Of Wisconsin ALCPG07


 Most (all?) fast MC analysis assume 100% muon eff. & 0% pion fake rate

Measuring $H \rightarrow \mu \mu$

 $\sqrt{s} = 1 \, TeV$ $L = 1000 \, fb^{-1}$

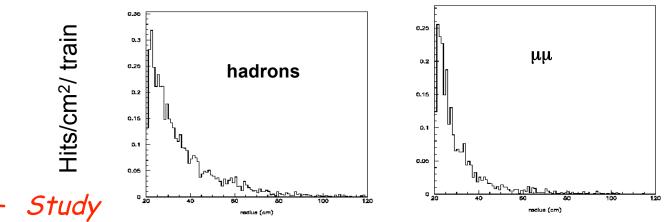
A fourfold improvement in resolution (a = 8 \rightarrow 2) is worth a factor 1.9 in \mathcal{L}

10/26/07

H. Band - U. Of Wisconsin ALCPG07

Design

What's needed to achieve a specific hadronic mis-id level ?

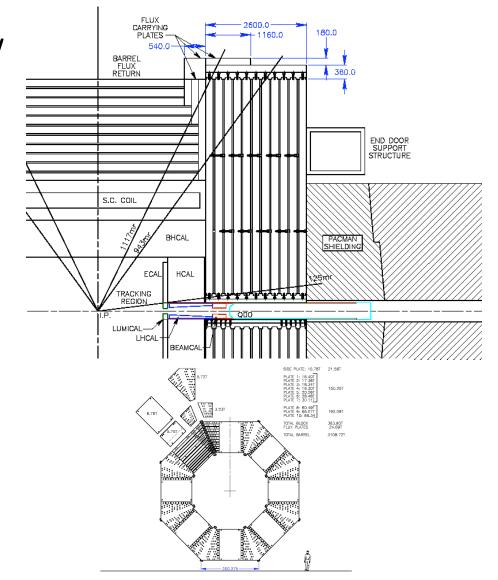

- Study by C. Milstene (2006) showed that an external muon system would increase the purity of a muon sample in 500 GeV bb jets from 69% to 94%.
- Design parameters
 - Number of layers
 - Segmentation/resolution
 - Steel thickness (flux return)
 - Cost
 - Expect modest requirements (10 double layers, 3-4 cm?) but need to justify

Design (2)

Design inputs

- Multiple scattering in coil sets min. resolution (~1 cm @ 4 GeV/c)
- Steel thickness -set by flux return requirements
- Rate capability set by machine backgrounds
 - 0.01 hit/cm² per train (change from ~2 10⁻⁴) N. Mokhov
 - 0.4 hits/cm² per train in the endcaps T. Maruyama $\gamma\gamma \rightarrow$ hadrons: 0.65 events/bx, $\gamma\gamma \rightarrow$ muons: 1.3 events/bx

 Efficiency and hadronic mis-id vs momentum while varying #layers, resolution

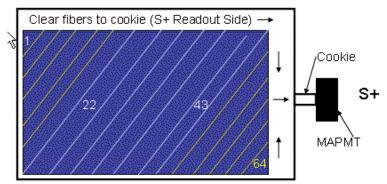

10/26/07

H. Band - U. Of Wisconsin ALCPG07

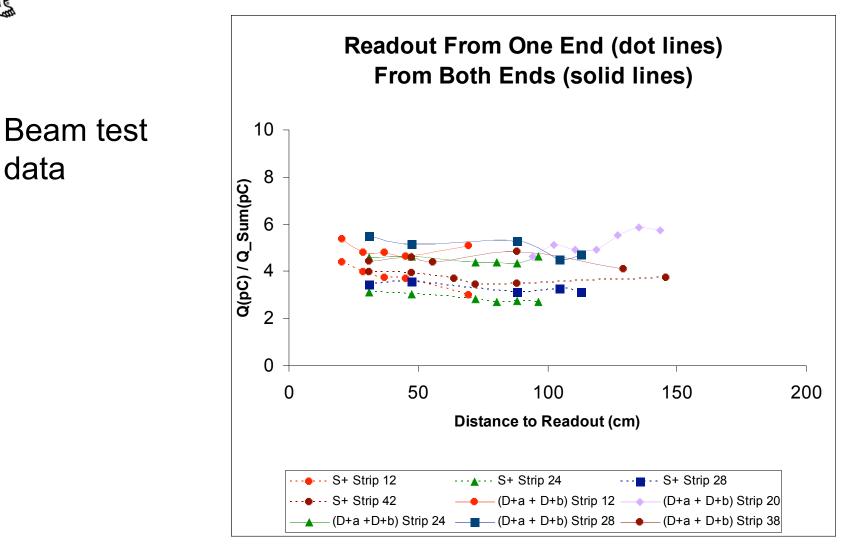
Engineering Design

- Jim Krebs has started on steel flux return design
- Goals minimize
 - weight & cost
 - Flux leakage
 - # of layers
- Goals Mechanically rigid (< 0.5 cm movement)
- Goals Ease of assembly (sub component weight)
- Goals Good Muon id

Engineering Design(2)


Main concern – flux RPC leakage RPC Muon Chamber installation • RPC (RPC) in endcap Dead spaces not optimal • RPC - 28 cm of steel between RPC quadrants RPC Should work hard to avoid projecting cracks e) theta {(n > (2*/2 65-theta)**2 +0 7\8&n < (5*/2 65-theta)**2 +1 5\)&8 - BaBaR - muons failing Cracks between barrel sextants loose NN selector efficiency Cracks between Endcap doors Gaps between muon 2.5 chambers theta 10/26/07 H. Band - U. Of Wisconsin ALCPG07 Gaps between muon 9 chambers

Technology - Scintillator


- MINOS style extruded Scintillator strip
- 4.1 cm wide by 1 cm thick
- ±45° to keep lengths short
- Light collected by wavelength shifting fiber
- Coupled to clear fiber on one end
- Readout by MultipleAnode PhotoMultipliers (64 channels) mounted outside gap or SiPM inside gap
- Four (1.25m X 2.5m) prototype modules with 64 strips built in 05
- Test beam data in 06 & 07 reported in detail in Monday's session

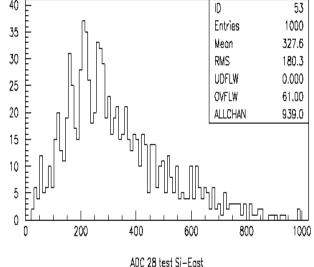
Clear fibers to cookie (S- Readout Side)

Single vs. Double Ended Readout

data

10/26/07

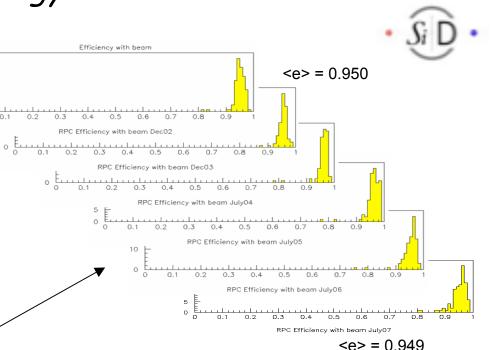
H. Band - U. Of Wisconsin ALCPG07



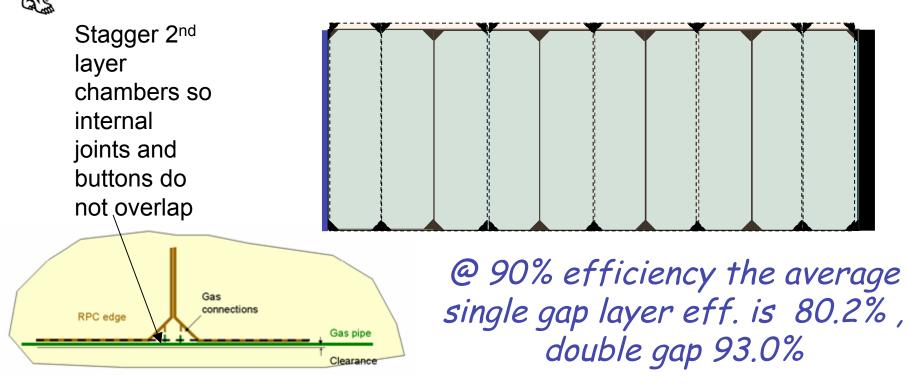
Scintillator Plans

- Focus on SiPM readout of muon scintillator strips
 - Eliminates clear fibers
 - Compact geometry $N_{ne} \approx 6.5 p.e.$

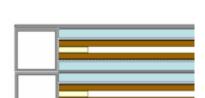
G. Pauletta


$$\varepsilon = 99\%$$

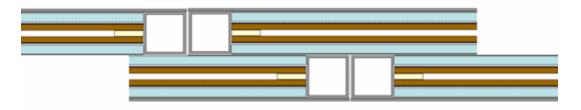
 $N_{d.c.} \approx 1.5 MHz$
 $G \approx 1.6 \times 10^6$


Technology - RPCs

- Despite Babar experience RPCs are good match to ILC environment
 - Cost advantage
 - Flexible shapes
 - 2nd generation RPCs have been reliable at low rates
 - Will be tested in many new applications
- Avalanche mode
 - 3 styles
 - Italian Bakelite linseed oil(Atlas, CMS) avalanche

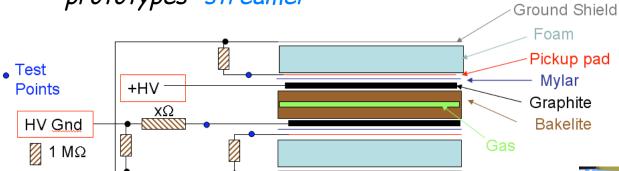


- IHEP Bakelite (streamer) (BESIII, Daya Bay
- Glass Argonne


Effective Efficiency - RPCs

Mid-layer Overlap

Outside edge



10/26/07

IHEP RPC & KPIX Studies

- Cosmic test stand built with BaBar spares and gas
- Initial tests of small 15 *15 cm IHEP prototypes -streamer

- KPIX is DC coupled ~2 µsec integration time
- RPC strips(pads) are AC coupled and see fast signals ~300 nsec decay time depending on termination of pad and HV ground
 - Revise KPIX
 - Directly connect to Bakelite ground plane

Tek J	L Trig'o	M Pos: 0.00	OS ACQUIRE
			Sample
			Peak Detec
		m	Average
2+			Averages
	AUA 2000-00		CH1 \ -40.0mV
CH1 200mV CH3 200mV	CH2 200mV	M 25015	73.5985Hz

10/26/07

H. Band - U. Of Wisconsin ALCPG07

RPC Plans

- Obtain larger IHEP RPCs
- Design and build KPIX(64 ch) interface board
 - Test on spare BaBar and New IHEP RPCs
- More F- sensitivity tests
 - Last year of BaBar running is good source of F-(and any other pollutants)
 - Test IHEP RPCs
- Cosmic ray tests (08)
- Need beam tests (09-10), Fermilab test beams have capability for ILC like time structure

SiD Muon Technology Choice

- Cost Estimate
 - "Now"
 - Potential future savings
 - 10 year operating costs

- New baseline
 - 10 layers
 - Double layer
 - 3-5 cm segmentation
- Criteria
 - Rate capability
 - Reliability
 - Required services
 - Ease of installation
 - Cost

Summary

- Muon System studies are severely manpower limited
- New people can make major contributions
- NEED
 - Fast MC study of the effect of hadronic mis-id rates in the benchmark processes
 - Optimization of the number of layers and segmentation
- Well defined, short term projects for those wishing to learn LC -SIMulation packages
- Contact
 - Gene <u>hefisk@fnal.gov</u>
 - Henry <u>hrb@slac.stanford.edu</u>