ILC Beam Instrumentation

- Introduction Remarks -

Manfred Wendt (Fermilab)

Past Activities

BCD/RDR Instrumentation Group:

Marc Ross, Phil Burrows, Junji Urakawa, Hans Braun,
Manfred Wendt, Graham Blair, Steve Smith, and many others.

• BCD:

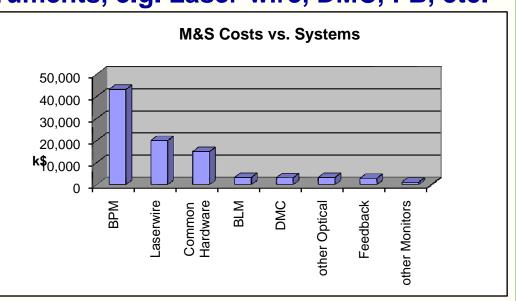
- Focus on mission critical beam instrumentation systems, i.e. beam orbit, emittance, bunch length, and machine protection
- Summarize R&D status of ongoing developments, particular high resolution cavity BPMs.
- Define requirements for these core instrumentation systems.

RDR

- Define a core set of beam instruments, and the fundamental requirements.
- Establish a comprehensive parametric spreadsheet, along areas and instruments for a complete cost analyzes.

ilc RDR Instrumentation Summary

INSTRUMENT	AREA					
requirements	e ⁻	e ⁺	DR	RTML	ML	BDS
(e.g. resolution)	source	source				
Button/stripline BPM	69	400	2×747			120
resolution (μm)	10-30	10-30	< 0.5			<100
C-Band Cavity BPM (warm)		109		2×649		262
resolution (μ m)		<0.1-0.5		< 0.1-0.5		< 0.1-0.5
S-Band Cavity BPM (warm)						14
resolution (μm)						< 0.1-0.5
L-Band Cavity BPM (warm)				2×27		42
resolution (μm)				<1-5		<1-5
L-Band Cavity BPM (cold)				2×28	2×280	
resolution (μ m)				~0.5-2	~0.5-2	
Laser-wire IP	8	20	2×1	2×12	2×3	8
resolution (μ m)	<0.5-5	< 0.5-5	< 0.5-5	<0.5-5	<0.5-5	< 0.5-5
Wirescanner	12	8				
Optical Monitors	6	17	2×2	2×8		11
DMC	3	4		2 × 2		2 (cold)
resolution ΔE ${\sim}0.1\%$ / s_z ${\sim}100~\mum$						
Beam Current Monitors	7	11	2×1	2×2	2 × 3	10
Beam Phase Monitor	4	2		2×3		2
BLM (PMT/IC)	60/2	400/20	$2 \times 40/4$	$2 \times 75/2$	$2 \times 325/10$	100/10
Feedback System	5	10	2×2	2×1	2 × 10	12



RDR Costing

Beam Instrumentation:

- Pickup detectors (mostly vacuum components), e.g. BPMs, toroids, screen monitors, WCMs, F-Cups, etc., also BLMs
- Read-out, control, timing, and other common hard- and software, NOT: racks, PS, CPU, control interface, etc.
- Cables
- Complex integrated instruments, e.g. Laser-wire, DMC, FB, etc.
- Cost drivers: BPMs, <u>Laser-wires, and DMC</u>
- Total costs: (no IP instrumentation)
 - ~93 M\$ M&S
 - ~ 257 manyears (FTE)

Area "Common" Instruments

Beam Instrumentation has to:

- measure beam (bunch) parameters (Intensity, orbit, tr. & long. emittance, phase, etc.) within areas, and at the transition between areas!
- provide detectors for machine protection and feedback systems.
- be based on a limited set of common, exchangeable instruments to optimize costs, R&D efficiency, maintenance, etc. among accelerator areas.
- Examples of "common" beam instruments:
 - Toroids (intensity), button and warm cavity BPMs (orbit), screen monitors & ODR (emittance), EOS & DMC (bunch length), readout hardware, components and subsystems (digitizers, etc.)
- Examples of area specific beam instrumentation:
 - Cold BPMs, IP instrumentation, fast IP FB.

EDR Activities & Issues

- Needs to follow up the RDR instrumentation lists for each area, refine the requirements, look to cost saving alternatives, define R&D needs, etc.
- Spread instrumentation WPs for international contribution, but also keep the "common" aspect in mind throughout the accelerator areas (coordination?).
- Clear definition on the WP deliverables!
- Beam Instrumentation R&D is linked to active groups and test facilities providing beam time, e.g. ATF, ESA, TTF, (NML),... it is NOT just a management exercise!
- Test facility instrumentation needs and R&D interests may not always follow GDE WPs!