Shower Containment and the Size of a Test Calorimeter

Adam Para, September 6, 2006

Why Test Calorimeter???

- It is not yet proven, but it is quite plausible that a dual readout calorimeter may offer very good energy resolution for jets \rightarrow simulation and analysis
- It is plausible that high enough light collection efficiency can be attained for Lead Glass + fiber, or Lead Glass + APD configuration \rightarrow optical test laboratory
- It is plausible that cheap enough Lead Glass (or other Cherenkov radiator) can be produced \rightarrow vendors contacts
- It is plausible that a realistic mechanical design of a large hermetic calorimeter can be produced \rightarrow engineering studies
- We need to demonstrate the energy resolution, linearity and e/ π response in the test beam

How Big a Test Calorimeter?

- Hadron calorimeters are large $\left(\mathrm{m}^{3}\right)$, hence expensive. Can't afford to be bigger than necessary.
- (if we build it) we want to demonstrate good energy resolution $\sim(20-30) \% /$ sqrt(E), that is $\sim 2-3 \%$ energy resolution at 100 GeV . If the calorimeter is not long/wide enough there will be some energy leakage from the calorimeter and its fluctuations will contribute to the energy resolution. Need containment $\sim 98 \%$ or better.

How Long a Calorimeter

- Need 2.5-3 m long lead glass
- Blue = Cherenkov
- Red = ionization

How Wide a Calorimeter?

- Need ~ 1m wide test module
- Red = ionization
- Blue = Cherenkov

Available Building Blocks

- E70 experiment (Lederman, upsilon): SF5 lead glass blocks 6 " $\times 6$ " $\times 16$ "
- 6 " is far too thick. Optimal absorber thickness needs study (sampling fluctuations): 3" (thick)? 2"(thin)? Options
- $3 \mathrm{~m}=120^{\prime \prime}$:
- 40 thick planes
- 60 thin planes
- 7×6 " $=105 \mathrm{~cm}$ wide
- $32^{\prime \prime}+12^{\prime \prime}=110 \mathrm{~cm}$ tall
- 18 'pixels' per plane
- Fundamental unit: lead glass + scintillator plate
- Transverse segmentation:
- Common LG and scintillator
- Is 6"x16" sufficient?

Readout?

- Assume: LG block and the scintillator plates are read out via a single waveshifting fiber (light collection efficiency and uniformity to be demonstrated)
- Channel count: $18 \times 2 \times 40$ (60) = 1440 (2160)
- Assume Hamamatsu 5800-M64 phototube (?) \rightarrow need 25(35) tubes
- Electronics?
- DAO?

Cutting the Lead Glass Blocks

- Cut along the long axis:
- Diamond band saw
- Water-jet (with abrasives)
- Initial vendor contacts: promising
- Surface quality: do cut surfaces need to be polished (manpower = cost)
- Need to find out what the surface quality is
- Need to find out what is the acceptable surface quality

