Anti-DID Options

Hitoshi Yamamoto July 5, 2007

Anti-DID

• To make B parallel to outgoing beams

Mean:

Detector-Integrated-Dipole (DID)

• Uniformity of field near DID coil ? (TPC)

Try modifying the Solenoid itself

Bookshelf (A. Yamamoto)

Use Mathematica. Superposition of loop fields (10 of them).

Pole tips not included.

Broken Solenoid

The angle is exaggerated.

Broken Solenoid Angle of B field on beam axis

Bookshelf

The angle is exaggerated.

Tilt angle = 0.010 rad.

Bookshelf Angle of B field on beam axis

L/2 = 4.5m

Tilt angle = 0.010 rad. ~1% variation seen.

Arrow

The angle is exaggerated.

Arrow Near beamline

Tilt angle = 0.010 rad.

Summary

- Most efficient in tilting the field.
- Maybe possible to adjust the angle later.
- Bookshelf
 - Can use a straight cylinder.
 - Cannot change the angle later.
 - Field is tilted by ~70% of the coil tilt.
 - Cannot change the angle later.

- Not an efficient way to tilt the field.
- Cylinder is not straight.

Questions

- Forces on the coil?
- Space for margins?
- Poletips?
- How important to have a flat field near the center?
- Field uniformity (TPC)?